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Abstract Data consistency conditions (DCCs) for projection operators
have been of great relevance in the field of tomography, as they allow
the determination of measured data’s feasibility prior to reconstruction.
Particularly useful are DCCs comparing two projections, accordingly
called pairwise DCCs (PDCCs). Such conditions compute certain
linear functionals dependent on individual projections, whose values
must coincide for consistency to hold. For many projection operators,
such PDCCs are known, but for the exponential fanbeam transform –
which is relevant for Single Photon Emission Tomography (SPECT) –
they are not. We show mathematically that no condition of this type
can exist for a pair of exponential fanbeam projections. Moreover, we
present a novel class of pairwise data consistency conditions, requiring
that the difference between certain linear functionals of two projections
lie in a specified interval, instead of coinciding as they would in
classical PDCCs. This new condition is substantiated by numerical
experiments (simulation study) on some phantoms.

1 Introduction

Tomographic techniques have become a vital tool in
medicine, allowing doctors to observe patients’ interior fea-
tures. A mathematical operator (projection operator) models
the underlying physics of the measurement process. The
data is usually structured in so-called projections, referring
to the data obtained during a specific measurement step. The
choice of projection operator depends on the measurement
setup used. The capability to determine whether measured
data is consistent with the model/projection operator has
found broad applications, such as identification/correction
of corrupted data, geometric calibration, parameter identifi-
cation, and motion detection [1–6]. Particularly useful are
conditions capable of finding inconsistencies from just two
projections, because small collections of arbitrarily oriented
projections can be tested using such conditions. We refer to
them as pairwise data consistency conditions (PDCCs).

A typical example is parallel-beam Computed Tomography
(CT), which is modeled by the Radon transform

[R f ](ψ,s) :=
∫
R

f (sϑ
⊥
ψ + tϑψ)dt (1)

for ψ ∈ [0,π[, s ∈ R and f ∈ C ∞
c (R2) (smooth function with

compact support), where ϑψ = (cosψ,sinψ)T and ϑ⊥
ψ =

(−sinψ,cosψ)T are the projection directions with the angle
ψ . In this case, the PDCCs are well-known [7]. For ψ1,ψ2 ∈
[0,π[ and all f ∈ C ∞

c (R2), they take the form∫
R
[R f ](ψ1,s)ds =

∫
R
[R f ](ψ2,s)ds. (2)

We denote by RΛ the operator R only containing two projec-
tions Λ = (ψ1,ψ2); we call it the pairwise Radon transform.

For several other projection operators, PDCCs have been
found, two examples being the fanbeam operator [8] and
the parallel-beam exponential operator [9]. One noticeable
projection operator whose PDCC is yet unknown, is the (pair-
wise) exponential fanbeam transform

[E Λ
µ f ](λ ,φ) :=

∫
R+

f (λ + tϑφ )eµt dt (3)

for λ ∈ Λ = (λ1,λ2) ∈ R2 ×R2 (the fan vertex positions),
φ ∈ [−π,π[ and f ∈ C ∞

c (Ω) with constant attenuation pa-
rameter µ ∈ R. Here, Ω is an open, connected set whose
compact closure does not intersect with the line containing λ 1
and λ 2. This operator finds applications in pinhole SPECT
imaging and corresponding PDCCs could find applications
in the alignment of SPECT/CT data [10]. Here, a projection
corresponds to all rays converging on λ from any direction.
The exponential term models constant attenuation processes;
more general attenuation can – under certain assumptions –
be converted to this exponential model, making this a mild
restriction for many applications. Figure 1 illustrates the
associated geometry. In this work, we explore PDCCs for the
exponential fanbeam operator. For the conventional fanbeam
transform (µ = 0), the PDDC has the form∫

π

−π

[E Λ
0 f ](λ 1,φ)

ϑ⊥
φ
·∆ dφ =

∫
π

−π

[E Λ
0 f ](λ 2,φ)

ϑ⊥
φ
·∆ dφ (4)

with ∆ = λ2−λ1 [8]. Mathematically, (4) states that the func-
tion

(
1/(ϑ⊥

φ
·∆),−1/(ϑ⊥

φ
·∆)

)
is orthogonal to Rg(E Λ

0 ),

which corresponds to the backprojections of 1/(ϑ⊥
φ
·∆) for

both projections being equal. Other mentioned PDCCs are
of similar mathematical structure. Hence, one might aim to
find a pair of functions Gλ 1,λ 2 ,Gλ 2,λ 1 such that

∫
π

−π

[E Λ
µ f ](λ1,φ)Gλ 1,λ 2(φ)dφ

=
∫

π

−π

[E Λ
µ f ](λ2,φ)Gλ 2,λ 1(φ)dφ (5)

for all f ∈ C ∞
c (Ω). As we will show, there are no PDDCs

of this form for the exponential fanbeam transform, i.e., (5)
does not possess a solution.

2 Nonexistence of PDCCs

We first set some relevant notation. Since the map (φ , t) 7→
λ + tϑφ present in (3) is a diffeomorphism for any λ ∈ R2,
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Figure 1: Illustration of the geometry of the fanbeam transform
with two projections. The black point x on the bold red line and
its parametrization in fanbeam coordinates with respect to the
projection λ 1 is highlighted.

we define the inverse parametrizations

φ i(x) = arg(x−λi) and ti(x) = |x−λi| (6)

for i ∈ {1,2}. Further, we define Ω′ = ({λ 1} × Φ1) ∪
({λ 2}×Φ2) with Φi = φ i(Ω) for i ∈ {1,2}; so Ω′ is es-
sentially a 2-projection sinogram domain.

Theorem 1. There is no pair of non-zero functions Gλ 1,λ 2 ∈
L1

loc(Φ1) (functions absolutely integrable on any compact
subset) and Gλ 2,λ 1 ∈ L1

loc(Φ2) such that (5) is satisfied for
all f ∈ C ∞

c (Ω) when µ ̸= 0.

Sketch of proof. We assume Gλ 1,λ 2 and Gλ 2,λ 1 non-zero sat-
isfying (5) were to exist. Plugging the definition of the expo-
nential fanbeam transform into (5) implies∫

Φ1

∫
R+

f (λ 1+tϑφ )eµt dt Gλ 1,λ 2(φ)dφ

=
∫

Φ2

∫
R+

f (λ 2+tϑφ )eµt dt Gλ 2,λ 1(φ)dφ . (7)

Substituting x = λ i+tϑφ for i ∈ {1,2}, this is equivalent to

∫
Ω

f (x)
Gλ 1,λ 2(φ 1(x))

t1(x)
eµt1(x) dx

=
∫

Ω

f (x)
Gλ 2,λ 1(φ 2(x))

t2(x)
eµt2(x) dx. (8)

Since this statement is assumed to be true for all f ∈ C ∞
c (Ω),

the fundamental lemma of variational calculus implies

Gλ 1,λ 2(φ1(x))
t1(x)

eµt1(x) =
Gλ 2,λ 1(φ2(x))

t2(x)
eµt2(x) (9)

for almost all x ∈ Ω. We show that this equation does not pos-
sess a solution (thus contradicting our original assumption)
by setting

hλ 1,λ 2(φ) = hλ 2,λ 1(φ) =
1

∆ ·ϑ⊥
φ

̸= 0, (10)

which, for all x ∈ Ω, satisfies

hλ 1,λ 2(φ 1(x))
t1(x)

=
hλ 2,λ 1(φ2(x))

t2(x)
. (11)

Hence, we set gλ 1,λ 2 := ln(Gλ 1,λ 2 /hλ 1,λ 2) and gλ 2,λ 1 :=
ln(Gλ 2,λ 1 /hλ 2,λ 1) which (combining (9), (11)) satisfies

gλ 1,λ 2(φ 1(x)))− gλ 2,λ 1(φ 2(x)) = µ(t2(x)− t1(x)). (12)

Moreover, expressing t1(x)− t2(x) explicitly via basic com-
putation – e.g., using the Law of Sines – shows that

gλ 1,λ 2(φ 1)−gλ 2,λ 1(φ 2) = µ
∆ · (ϑ⊥

φ1
−ϑ⊥

φ2
)

ϑ⊥
φ 1
·ϑφ 2

(13)

for all φ 1 ∈ Φ1 and φ 2 ∈ Φ2. It seems dubious that the right-
hand side of (13) can be the sum of functions only depending
on φ 1 or φ 2, respectively, as required by the left-hand side.
Proving that is slightly technical, so we do not go into detail
here, but roughly speaking it involves observing that the
left-hand side of

gλ 1,λ 2(φ 1)−gλ 1,λ 2(φ̃ 1)

= µ
∆ · (ϑ⊥

φ1
−ϑ⊥

φ2
)

ϑ⊥
φ 1
·ϑφ 2

−µ

∆ · (ϑ⊥
φ̃1
−ϑ⊥

φ2
)

ϑ⊥
φ̃ 1
·ϑφ 2

(14)

does not depend on φ 2, but the right-hand side does, as can
be verified via evaluation for certain values φ 1, φ̃ 1,φ 2 when
µ ̸= 0. Since the function in (14) is analytical when the
denominator is not zero, the equation is wrong for almost
every tuple, particularly the ones representing Ω. So (13) has
no solution, and consequently neither does (9), as required to
prove the theorem.

Many of the steps in the proof of Theorem 1 are not specific
to the exponential fanbeam transform, but also apply to other
projection pair operators. Thus the approach can be used to
check if a projection pair operator possesses a PDCC, and
also gives a method for identifying them if they do.

Not only range conditions of the specific form (5) cannot
exist, but in fact, no L2(Ω′)-continuous conditions of any
kind can; even if they were non-linear.

Theorem 2. When µ ̸= 0, there is no continuous function
F : L2(Ω′)→ R which satisfies

1. F(g) = 0 when g ∈ Rg(E Λ
µ),

2. There is g ∈ L2(Ω′) with F(g) ̸= 0.

Sketch of proof. As a direct consequence of Theorem 1, the
range of E Λ

µ must be dense in L2(Ω′) as no non-trivial orthog-
onal vector exists. If F as described were to exist, it would
be zero on a dense set, and by continuity zero everywhere,
contradicting the second point.

Real world data are always imperfect – and therefore incon-
sistent. A DCC which is continuous will be nearly satisfied
for very mildly inconsistent data. Thus, a continuous DCC
is favored in practice, even though it can only identify the
closure of the range. It is not yet known, whether the range
of the exponential fanbeam transform is closed.
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3 Alternative consistency conditions

That no PDCCs exist, does not imply that there is no over-
lapping information whatsoever. There might still be a large
class of functions for which some kind of consistency criteria
are possible.

Evidently, the ratio for λ 1 to λ 2 of the exponential weight
applied by E Λ

µ to any point x is eµ(t1(x)−t2(x)), and aside from
this factor, the measurements behave like conventional fan-
beam data (µ = 0). Hence, we define

δ µ =max
x∈Ω

(
µ
(
t1(x)−t2(x)

))
, δ µ =min

x∈Ω

(
µ
(
t1(x)−t2(x)

))
.

Theorem 3. Let f ∈ C ∞
c (Ω) with f ≥ 0 not constantly zero.

Then ∫
π

−π
[E Λ

µ f ](λ 1,φ)
1

ϑ⊥
φ
·∆ dφ∫

π

−π
[E Λ

µ f ](λ 2,φ)
1

ϑ⊥
φ
·∆ dφ

 ∈
[
eδ µ ,eδ µ

]
. (15)

Note that the left-hand side of (15) (henceforth called con-
sistency quotient) would be 1 for the conventional fanbeam
transform (see (4)). So this condition states that the expo-
nential fanbeam transform satisfies the conventional fanbeam
transform’s PDCC within a certain margin dependent on
the geometry (the extent of Ω and positions λ 1,λ 2) and the
attenuation coefficient.

Satisfying (15) does not guarantee consistency, as mildly
inconsistent data might still be within the bounds. However,
violating the condition implies inconsistency with certainty.

This result does not contradict Theorem 2 since the consis-
tency quotient in (15) is not continuous at f = 0. For f giving
a non-zero denominator in (15), the denominator does not
become zero when sufficiently small noise is added, making
the condition stable under low noise conditions.

Sketch of proof. We define the function f̃ (x) =
f (x)eµ(t1(x)−t2(x)) and the conventional fanbeam’s PDCC (4)
for f (x)eµt1(x) implies∫

π

−π

[E Λ
µ f ](λ 1,φ)

1
ϑ⊥

φ
·∆ dφ

=
∫

π

−π

[E Λ
µ f̃ ](λ 2,φ)

1
ϑ⊥

φ
·∆ dφ . (16)

Moreover, using the mean value theorem, it is easy to see
that

[E Λ
µ f̃ ](λ 2,φ)

[E Λ
µ f ](λ 2,φ)

∈
[
eδ µ ,eδ µ

]
. (17)

Combining the right-hand side of (16) with (17) and basic
integration properties, Theorem 3 follows directly.

4 Numerical experiments

We conducted numerical experiments to corroborate The-
orem 3’s result and to show that the interval proposed in

(0,0)

80cm

40cm

40cm

20cm

24cm

Figure 2: Illustration of the geometry used for numerical experi-
ments, with the blue dots representing the fan vertex positions. The
central 40 cm × 40 cm box represents the imaging domain con-
taining activity overlayed with an illustration of our choice of Ω.
On the right: (upper left) the NCAT phantom and its shifted form
(lower left), (upper right) the rectangular domain Ω and (lower
right) the second phantom consisting of a hot source located in the
bottom right corner of Ω.

(15) is not chosen needlessly big, but is violated by incon-
sistent enough data. To that end, we considered the fol-
lowing setup: We had fan vertex positions λ = 80ϑϕ for
ϕ = {−90◦,−88◦, . . . ,88◦,90◦}. The imaging domain was a
40 cm × 40 cm square centered at the origin, and the attenua-
tion parameter µ =−0.154 (the attenuation per cm of water).
We chose Ω= [−20 cm,20 cm]× [−14 cm,8 cm] reflecting a
box with width and height to encompass the activity. We com-
puted the consistency quotient for two activity distributions
designed to highlight specific aspects of Theorem 3. Those
activities were the NCAT phantom [11] and a (Hot Source)
phantom with constant activity in a circle with radius 1 cm at
the bottom right extremity of Ω. Those phantoms were digi-
tally represented on an array of Nx×Nx pixels with Nx = 400
and were transformed into sinograms with Ns = 200 detec-
tor pixels positioned equispaced on a flat detector covering
the relative angular range of [−arctan

( 5
12

)
,arctan

( 5
12

)
]; see

Figure 2. The exponential fanbeam transform was executed
with Gratopy [12] employing a pixel-driven approach. We
simulated motion inconsistencies by shifting the phantom for
projections with ϕ > 4◦ by 4 cm in the x-direction. This cor-
responded to an abrupt movement of the patient at 8 minutes
after the beginning of a 15-minutes scan.

Figure 3 depicts the evaluation of condition (15) for the
two scenarios by showing the consistency quotient for the
middle projection (associated with ϕ = 0) paired with any
other λ , and the corresponding bounds (the right-hand side
of (15)). For the NCAT phantom without motion (consistent
projections) the consistency quotient remained close to one,
and stayed well within the bounds given by Theorem 3. For
the NCAT phantom with motion, the consistency quotient
behaved similarly, but did violate the consistency bounds
for projections near the reference projection. For the second
phantom, the data were consistent (no motion) and, as ex-
pected, the consistency quotient remained within the bounds,
but closely followed the upper right arm of the bounds, which
supports the notion that these bounds cannot be improved
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Figure 3: Evaluation of (15) in the numerical experiments, on
the top for the NCAT phantom, below the second phantom. The
consistency quotient of the consistent measurements and the incon-
sistent measurments with motion at the 8-minute mark are depicted.
These observations are made for λ 1 = ϑϕ with the angle ϕ = 0,
while the angles of λ 2 are on the x-axis.

when using this particular consistency quotient. Simulations
with the hot source in the other three corners of the rectangu-
lar support region result in tracing the other three arms of the
bounds.

5 Summary and Outlook

This paper discussed data consistency conditions for the
exponential fanbeam transform, showing that (classical) pair-
wise data consistency conditions cannot exist for this trans-
form. As an alternative, Theorem 3 provides a weak form
of PDCC whereby a certain expression, the consistency quo-
tient, must lie within a defined interval if the two projections
are consistent. The NCAT simulations illustrated three conse-
quences of Theorem 3, namely (i) that if the projections are
consistent, the consistency quotient will lie within the bounds
defined by the interval; (ii) equivalently, values lying outside
the bounds definitely indicate inconsistency; and (iii) values
inside the bounds do not provide information on consistency.
For similar projections (fanbeam vertex positions fairly close
to each other) the bounds are reasonably small and effec-
tively detected inconsistency. For distant projections though,

the bounds can be very broad, which limits their usefulness.
However, the functional in (15) can probably be improved
upon, to achieve tighter bounds and a consequently stronger
PDCC. This might be the topic of future work.

We have illustrated the potential for patient motion identi-
fication, but other applications, such as detector sensitivity
response or identification of pinhole positions, are conceiv-
able.
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