Convergence of unmatched ray-driven forward and pixel-driven backprojection in tomography

Richard Huber

C omputational U ncertainty Q uantification for Inverse problems

Analysis+Probability Seminar, Case Western Reserve University April 15, 2025 – Cleveland, United States

DTU Compute

Department of Applied Mathematics and Computer Science

Introduction

Tomography in a nutshell

Angle

Introduction

Tomography in a nutshell

Introduction

Tomography in a nutshell

 $\mathcal{R}f = g$

Angle

 $\mathcal{R}f = g$

 $\mathcal{R}\mathbf{f} = g$

 $\mathcal{R}f = g$

DTU

• Radon transform ${\mathcal R}$ has various applications in imaging:

- \bullet Radon transform ${\cal R}$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.

- Radon transform $\mathcal R$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.
- Tomographic reconstruction:

- Radon transform $\mathcal R$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.
- Tomographic reconstruction:
 - Solve operator-equations $\mathcal{R}f = g$,
 - Employ iterative solver,

- Radon transform $\mathcal R$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.
- Tomographic reconstruction:
 - Solve operator-equations $\mathcal{R}f = g$,
 - Employ iterative solver,

- Radon transform $\mathcal R$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.
- Tomographic reconstruction:
 - Solve operator-equations $\mathcal{R}f = g$,
 - Employ iterative solver,
 - Approaches require ${\mathcal R}$ and ${\mathcal R}^*,$
 - Discrete $A \approx \mathcal{R}$ and $B \approx \mathcal{R}^*$.

- Radon transform $\mathcal R$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.
- Tomographic reconstruction:
 - Solve operator-equations $\mathcal{R}f = g$,
 - Employ iterative solver,
 - Approaches require $\mathcal R$ and $\mathcal R^*$,
 - Discrete $A \approx \mathcal{R}$ and $B \approx \mathcal{R}^*$.

- Radon transform $\mathcal R$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.
- Tomographic reconstruction:
 - Solve operator-equations $\mathcal{R}f = g$,
 - Employ iterative solver,
 - Approaches require $\mathcal R$ and $\mathcal R^*$,
 - Discrete $A \approx \mathcal{R}$ and $B \approx \mathcal{R}^*$. $A^T \neq B$.

- Radon transform $\mathcal R$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.
- Tomographic reconstruction:
 - Solve operator-equations $\mathcal{R}f = g$,
 - Employ iterative solver,
 - Approaches require $\mathcal R$ and $\mathcal R^*$,
 - Discrete $A \approx \mathcal{R}$ and $B \approx \mathcal{R}^*$. $A^T \neq B$.

- Radon transform $\mathcal R$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.
- Tomographic reconstruction:
 - Solve operator-equations $\mathcal{R}f = g$,
 - Employ iterative solver,
 - Approaches require $\mathcal R$ and $\mathcal R^*$,
 - Discrete $A \approx \mathcal{R}$ and $B \approx \mathcal{R}^*$. $A^T \neq B$. Problematic for iterative solvers.

- Radon transform $\mathcal R$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.
- Tomographic reconstruction:
 - Solve operator-equations $\mathcal{R}f = g$,
 - Employ iterative solver,
 - Approaches require $\mathcal R$ and $\mathcal R^*$,
 - Discrete $A \approx \mathcal{R}$ and $B \approx \mathcal{R}^*$. $A^T \neq B$. Problematic for iterative solvers.

- Radon transform $\mathcal R$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.
- Tomographic reconstruction:
 - Solve operator-equations $\mathcal{R}f = g$,
 - Employ iterative solver,
 - Approaches require $\mathcal R$ and $\mathcal R^*$,
 - Discrete $A \approx \mathcal{R}$ and $B \approx \mathcal{R}^*$. $A^T \neq B$. Problematic for iterative solvers.
- Resolutions of discretizations:

3

- Radon transform $\mathcal R$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.
- Tomographic reconstruction:
 - Solve operator-equations $\mathcal{R}f = g$,
 - Employ iterative solver,
 - Approaches require $\mathcal R$ and $\mathcal R^*$,
 - Discrete $A \approx \mathcal{R}$ and $B \approx \mathcal{R}^*$. $A^T \neq B$. Problematic for iterative solvers.
- Resolutions of discretizations:
 - Spatial resolution δ_x and detector resolution δ_s ,

- Radon transform $\mathcal R$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.
- Tomographic reconstruction:
 - Solve operator-equations $\mathcal{R}f = g$,
 - Employ iterative solver,
 - Approaches require $\mathcal R$ and $\mathcal R^*$,
 - Discrete $A \approx \mathcal{R}$ and $B \approx \mathcal{R}^*$. $A^T \neq B$. Problematic for iterative solvers.
- Resolutions of discretizations:
 - Spatial resolution δ_x and detector resolution δ_s ,
 - Most commonly, balanced resolutions $\delta_x \approx \delta_s$.

3

- Radon transform $\mathcal R$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.
- Tomographic reconstruction:
 - Solve operator-equations $\mathcal{R}f = g$,
 - Employ iterative solver,
 - Approaches require $\mathcal R$ and $\mathcal R^*$,
 - Discrete $A \approx \mathcal{R}$ and $B \approx \mathcal{R}^*$. $A^T \neq B$. Problematic for iterative solvers.
- Resolutions of discretizations:
 - Spatial resolution δ_x and detector resolution δ_s ,
 - Most commonly, balanced resolutions $\delta_x \approx \delta_s$.

- Radon transform $\mathcal R$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.
- Tomographic reconstruction:
 - Solve operator-equations $\mathcal{R}f = g$,
 - Employ iterative solver,
 - Approaches require $\mathcal R$ and $\mathcal R^*$,
 - Discrete $A \approx \mathcal{R}$ and $B \approx \mathcal{R}^*$. $A^T \neq B$. Problematic for iterative solvers.
- Resolutions of discretizations:
 - Spatial resolution δ_x and detector resolution δ_s ,
 - Most commonly, balanced resolutions $\delta_x \approx \delta_s$.
- Different discretization techniques
 - Ray-driven ... forward +, backward -,
 - Pixel-driven ... forward –, backward +.

- Radon transform $\mathcal R$ has various applications in imaging:
 - Medical imaging,
 - Materials science, astro-physics and seismography.
- Tomographic reconstruction:
 - Solve operator-equations $\mathcal{R}f = g$,
 - Employ iterative solver,
 - Approaches require $\mathcal R$ and $\mathcal R^*$,
 - Discrete $A \approx \mathcal{R}$ and $B \approx \mathcal{R}^*$. $A^T \neq B$. Problematic for iterative solvers.
- Resolutions of discretizations:
 - Spatial resolution δ_x and detector resolution δ_s ,
 - Most commonly, balanced resolutions $\delta_x \approx \delta_s$.
- Different discretization techniques
 - Ray-driven ... forward +, backward -,
 - Pixel-driven ... forward –, backward +.

Goal: Investigate approximation properties!

3 DTU Compute

• The Radon Transform

- The Radon Transform
- Convolutional Discretization Schemes

- The Radon Transform
- Convolutional Discretization Schemes
- Convergence Results

- The Radon Transform
- Convolutional Discretization Schemes
- Convergence Results
- Numerical Experiments

- The Radon Transform
- Convolutional Discretization Schemes
- Convergence Results
- Numerical Experiments
- The L^2 Optimal Discretization

The Radon Transform **Outline**

• The Radon Transform

- Convolutional Discretization Schemes
- Convergence Results
- Numerical Experiments
- The L^2 Optimal Discretization

Definition

Let $\Omega = B(0,1) \subset \mathbb{R}^2$ and $\mathcal{S} = [-\pi,\pi[\times] - 1, 1[\widehat{=}S^1 \times] - 1, 1[.$

Definition

Let $\Omega = B(0,1) \subset \mathbb{R}^2$ and $S = [-\pi, \pi[\times] - 1, 1[=S^1 \times] - 1, 1[.$

Definition

$$\begin{split} & \operatorname{Let}\,\Omega=B(0,1)\subset \mathbb{R}^2 \text{ and} \\ & \mathcal{S}=[-\pi,\pi[\times]-1,1[\widehat{=}S^1\times]-1,1[. \end{split}$$

Definition

 $\begin{array}{l} \operatorname{Let} \Omega = B(0,1) \subset \mathbb{R}^2 \text{ and} \\ \mathcal{S} = [-\pi,\pi[\times]-1,1[\widehat{=}S^1\times]-1,1[. \end{array}$

Definition

Let $\Omega = B(0,1) \subset \mathbb{R}^2$ and $\mathcal{S} = [-\pi, \pi[\times] - 1, 1[\widehat{=}S^1 \times] - 1, 1[.$

Definition

 $\begin{array}{l} \operatorname{Let} \Omega = B(0,1) \subset \mathbb{R}^2 \text{ and} \\ \mathcal{S} = [-\pi,\pi[\times]-1,1[\widehat{=} \overset{}{S}^1\times]-1,1[. \end{array} \\ \end{array}$

Definition

Let $\Omega = B(0,1) \subset \mathbb{R}^2$ and $S = [-\pi, \pi[\times] - 1, 1[\widehat{=}S^1 \times] - 1, 1[.$ The Radon transform $\mathcal{R} \colon L^2(\Omega) \to L^2(\mathcal{S})$

Definition

Let $\Omega = B(0,1) \subset \mathbb{R}^2$ and $\mathcal{S} = [-\pi, \pi[\times] - 1, 1[\widehat{=}S^1 \times] - 1, 1[.$ The Radon transform $\mathcal{R} \colon L^2(\Omega) \to L^2(\mathcal{S})$

$$[\mathcal{R}f](\phi,s) = \int_{\Omega} f(x) \, \mathrm{d}\mathcal{H}^1 \, \llcorner \, L_{\phi,s}(x)$$

Definition

Let $\Omega = B(0,1) \subset \mathbb{R}^2$ and $\mathcal{S} = [-\pi, \pi[\times] - 1, 1[\widehat{=}S^1 \times] - 1, 1[.$ The Radon transform $\mathcal{R} \colon L^2(\Omega) \to L^2(\mathcal{S})$

$$[\mathcal{R}f](\phi,s) = \int_{\Omega} f(x) \, \mathrm{d}\mathcal{H}^1 \, \llcorner \, L_{\phi,s}(x)$$

Definition

Let $\Omega = B(0,1) \subset \mathbb{R}^2$ and $\mathcal{S} = [-\pi, \pi[\times] - 1, 1[\widehat{=}S^1 \times] - 1, 1[.$ The Radon transform $\mathcal{R} \colon L^2(\Omega) \to L^2(\mathcal{S})$

$$[\mathcal{R}f](\phi,s) = \int_{\Omega} f(x) \, \mathrm{d}\mathcal{H}^1 \sqcup L_{\phi,s}(x)$$
$$= \int_{\mathbb{R}} f\left(s\vartheta(\phi) + t\vartheta^{\perp}(\phi)\right) \, \mathrm{d}t.$$

Definition

Let $\Omega = B(0,1) \subset \mathbb{R}^2$ and $\mathcal{S} = [-\pi, \pi[\times] - 1, 1[\widehat{=}S^1 \times] - 1, 1[.$ The Radon transform $\mathcal{R} \colon L^2(\Omega) \to L^2(\mathcal{S})$

$$[\mathcal{R}f](\phi,s) = \int_{\Omega} f(x) \, \mathrm{d}\mathcal{H}^1 \llcorner L_{\phi,s}(x)$$
$$= \int_{\mathbb{R}} f\left(s\vartheta(\phi) + t\vartheta^{\perp}(\phi)\right) \, \mathrm{d}t.$$

Theorem

The Radon transform $\mathcal{R}: L^2(\Omega) \to L^2(\mathcal{S})$ is a continuous linear operator.

Definition

Let $\Omega = B(0,1) \subset \mathbb{R}^2$ and $\mathcal{S} = [-\pi, \pi[\times] - 1, 1[\widehat{=}S^1 \times] - 1, 1[.$ The Radon transform $\mathcal{R} \colon L^2(\Omega) \to L^2(\mathcal{S})$

$$[\mathcal{R}f](\phi,s) = \int_{\Omega} f(x) \, \mathrm{d}\mathcal{H}^1 \llcorner L_{\phi,s}(x)$$
$$= \int_{\mathbb{R}} f\left(s\vartheta(\phi) + t\vartheta^{\perp}(\phi)\right) \, \mathrm{d}t.$$

Theorem

The Radon transform $\mathcal{R}: L^2(\Omega) \to L^2(\mathcal{S})$ is a continuous linear operator.

Definition

Let $\Omega = B(0,1) \subset \mathbb{R}^2$ and $\mathcal{S} = [-\pi, \pi[\times] - 1, 1[\widehat{=}S^1 \times] - 1, 1[.$ The Radon transform $\mathcal{R} \colon L^2(\Omega) \to L^2(\mathcal{S})$

$$[\mathcal{R}f](\phi, s) = \int_{\Omega} f(x) \, \mathrm{d}\mathcal{H}^{1} \llcorner L_{\phi, s}(x)$$
$$= \int_{\mathbb{R}} f\left(s\vartheta(\phi) + t\vartheta^{\perp}(\phi)\right) \, \mathrm{d}t.$$

Theorem

The Radon transform $\mathcal{R}: L^2(\Omega) \to L^2(\mathcal{S})$ is a continuous linear operator. In particular the operator is compact.

Definition

Let $\Omega = B(0,1) \subset \mathbb{R}^2$ and $\mathcal{S} = [-\pi, \pi[\times] - 1, 1[\widehat{=}S^1 \times] - 1, 1[.$ The Radon transform $\mathcal{R} \colon L^2(\Omega) \to L^2(\mathcal{S})$

$$[\mathcal{R}f](\phi, s) = \int_{\Omega} f(x) \, \mathrm{d}\mathcal{H}^{1} \llcorner L_{\phi, s}(x)$$
$$= \int_{\mathbb{R}} f\left(s\vartheta(\phi) + t\vartheta^{\perp}(\phi)\right) \, \mathrm{d}t.$$

Theorem

The Radon transform $\mathcal{R}: L^2(\Omega) \to L^2(\mathcal{S})$ is a continuous linear operator. In particular the operator is compact.

Definition

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Definition

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Definition

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Definition

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Definition

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Definition

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Definition

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Definition

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Definition

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Definition

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Definition

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Definition

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Definition

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Definition

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Definition

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Definition

The backprojection $\mathcal{R}^*\colon L^2(\mathcal{S})\to L^2(\Omega)$ is given according to

$$[\mathcal{R}^*g](x) = \int_{[-\pi,\pi[} g(\phi, x \cdot \vartheta(\phi)) \,\mathrm{d}\phi.$$

Lemma

The operator \mathcal{R}^* is indeed the adjoint to $\mathcal{R}: L^2(\Omega) \to L^2(\mathcal{S})$.

Convolutional Discretization Schemes **Outline**

- The Radon Transform
- Convolutional Discretization Schemes
- Convergence Results
- Numerical Experiments
- The L^2 Optimal Discretization

9

DTU

• Angles:
$$\phi_0 < \cdots < \phi_{N_{\phi}-1}$$
, with $\vartheta_q = (\cos(\phi_q), \sin(\phi_q))$,
 $\Phi_q = \left[\frac{\phi_{q-1}+\phi_q}{2}, \frac{\phi_q+\phi_{q+1}}{2}\right]$ and $\delta_{\phi} = \max_q |\Phi_q|$.

• Detector offsets: Equispaced $s_0 < \cdots < s_{N_s-1}$ with corresponding pixels $S_p = s_p + \left[-\frac{\delta_s}{2}, \frac{\delta_s}{2}\right]$.

• Angles:
$$\phi_0 < \cdots < \phi_{N_{\phi}-1}$$
, with $\vartheta_q = (\cos(\phi_q), \sin(\phi_q))$,
 $\Phi_q = \left[\frac{\phi_{q-1}+\phi_q}{2}, \frac{\phi_q+\phi_{q+1}}{2}\right]$ and $\delta_{\phi} = \max_q |\Phi_q|$.

• Detector offsets: Equispaced $s_0 < \cdots < s_{N_s-1}$ with corresponding pixels $S_p = s_p + [-\frac{\delta_s}{2}, \frac{\delta_s}{2}].$

DTU

- Angles: $\phi_0 < \cdots < \phi_{N_{\phi}-1}$, with $\vartheta_q = (\cos(\phi_q), \sin(\phi_q))$, $\Phi_q = \left[\frac{\phi_{q-1}+\phi_q}{2}, \frac{\phi_q+\phi_{q+1}}{2}\right]$ and $\delta_{\phi} = \max_q |\Phi_q|$.
- Detector offsets: Equispaced $s_0 < \cdots < s_{N_s-1}$ with corresponding pixels $S_p = s_p + \left[-\frac{\delta_s}{2}, \frac{\delta_s}{2}\right]$.

- Angles: $\phi_0 < \cdots < \phi_{N_{\phi}-1}$, with $\vartheta_q = (\cos(\phi_q), \sin(\phi_q))$, $\Phi_q = \left[\frac{\phi_{q-1}+\phi_q}{2}, \frac{\phi_q+\phi_{q+1}}{2}\right]$ and $\delta_{\phi} = \max_q |\Phi_q|$.
- Detector offsets: Equispaced $s_0 < \cdots < s_{N_s-1}$ with corresponding pixels $S_p = s_p + [-\frac{\delta_s}{2}, \frac{\delta_s}{2}].$
- Image pixels: Equispaced pixels X_{ij} with centers x_{ij} and width δ_x .

- Angles: $\phi_0 < \cdots < \phi_{N_{\phi}-1}$, with $\vartheta_q = (\cos(\phi_q), \sin(\phi_q))$, $\Phi_q = \left[\frac{\phi_{q-1}+\phi_q}{2}, \frac{\phi_q+\phi_{q+1}}{2}\right]$ and $\delta_{\phi} = \max_q |\Phi_q|$.
- Detector offsets: Equispaced $s_0 < \cdots < s_{N_s-1}$ with corresponding pixels $S_p = s_p + [-\frac{\delta_s}{2}, \frac{\delta_s}{2}].$
- Image pixels: Equispaced pixels X_{ij} with centers x_{ij} and width δ_x .

- Angles: $\phi_0 < \cdots < \phi_{N_{\phi}-1}$, with $\vartheta_q = (\cos(\phi_q), \sin(\phi_q))$, $\Phi_q = \left[\frac{\phi_{q-1}+\phi_q}{2}, \frac{\phi_q+\phi_{q+1}}{2}\right]$ and $\delta_{\phi} = \max_q |\Phi_q|$.
- Detector offsets: Equispaced $s_0 < \cdots < s_{N_s-1}$ with corresponding pixels $S_p = s_p + [-\frac{\delta_s}{2}, \frac{\delta_s}{2}].$
- Image pixels: Equispaced pixels X_{ij} with centers x_{ij} and width δ_x .

- Angles: $\phi_0 < \cdots < \phi_{N_{\phi}-1}$, with $\vartheta_q = (\cos(\phi_q), \sin(\phi_q))$, $\Phi_q = [\frac{\phi_{q-1}+\phi_q}{2}, \frac{\phi_q+\phi_{q+1}}{2}[$ and $\delta_{\phi} = \max_q |\Phi_q|.$
- Detector offsets: Equispaced $s_0 < \cdots < s_{N_s-1}$ with corresponding pixels $S_p = s_p + [-\frac{\delta_s}{2}, \frac{\delta_s}{2}].$
- Image pixels: Equispaced pixels X_{ij} with centers x_{ij} and width δ_x .
- Discretization parameters: δ_s , δ_{ϕ} and δ_x .

• Notationally $\delta = (\delta_x, \delta_s, \delta_\phi) \in (\mathbb{R}^+)^3$.

$$L^2(\Omega) \xrightarrow{\mathcal{R}} L^2(\mathcal{S})$$

DTU

- Notationally $\delta = (\delta_x, \delta_s, \delta_\phi) \in (\mathbb{R}^+)^3$.
- We consider (finite-dimensional) spaces of piecewise constant function

$$L^2(\Omega) \longrightarrow L^2(\mathcal{S})$$

DTU

.

- Notationally $\delta = (\delta_x, \delta_s, \delta_\phi) \in (\mathbb{R}^+)^3$.
- We consider (finite-dimensional) spaces of piecewise constant function

 $U_{\delta} := \operatorname{span}\{\chi_{X_{ij}}\}_{i,j \in [N_x]},$

$$L^2(\Omega) \longrightarrow L^2(\mathcal{S})$$

- Notationally $\delta = (\delta_x, \delta_s, \delta_\phi) \in (\mathbb{R}^+)^3$.
- We consider (finite-dimensional) spaces of piecewise constant function

$$U_{\delta} := \operatorname{span}\{\chi_{X_{ij}}\}_{i,j \in [N_x]}, \qquad V_{\delta} := \operatorname{span}\{\chi_{\Phi_q \times S_p}\}_{q \in [N_{\phi}], p \in [N_s]}.$$

$$L^2(\Omega) \xrightarrow{\mathcal{R}} L^2(\mathcal{S})$$

- Notationally $\delta = (\delta_x, \delta_s, \delta_\phi) \in (\mathbb{R}^+)^3$.
- We consider (finite-dimensional) spaces of piecewise constant function

$$U_{\delta} := \operatorname{span}\{\chi_{X_{ij}}\}_{i,j \in [N_x]}, \qquad V_{\delta} := \operatorname{span}\{\chi_{\Phi_q \times S_p}\}_{q \in [N_{\phi}], p \in [N_s]}.$$

• Matrix implementation A can be associated with $\mathcal{R}_{\delta} \colon U_{\delta} \to V_{\delta}$.

- Notationally $\delta = (\delta_x, \delta_s, \delta_\phi) \in (\mathbb{R}^+)^3$.
- We consider (finite-dimensional) spaces of piecewise constant function

$$U_{\delta} := \operatorname{span}\{\chi_{X_{ij}}\}_{i,j \in [N_x]}, \qquad V_{\delta} := \operatorname{span}\{\chi_{\Phi_q \times S_p}\}_{q \in [N_{\phi}], p \in [N_s]}.$$

- Matrix implementation A can be associated with $\mathcal{R}_{\delta} \colon U_{\delta} \to V_{\delta}$.
- Entry $A_{qp,ij}$... weight attributed to the calculation of L_{ϕ_q,s_p} from a pixel X_{ij} .

- Notationally $\delta = (\delta_x, \delta_s, \delta_\phi) \in (\mathbb{R}^+)^3$.
- We consider (finite-dimensional) spaces of piecewise constant function

$$U_{\delta} := \operatorname{span}\{\chi_{X_{ij}}\}_{i,j \in [N_x]}, \qquad V_{\delta} := \operatorname{span}\{\chi_{\Phi_q \times S_p}\}_{q \in [N_{\phi}], p \in [N_s]}.$$

- Matrix implementation A can be associated with $\mathcal{R}_{\delta} \colon U_{\delta} \to V_{\delta}$.
- Entry $A_{qp,ij}$... weight attributed to the calculation of L_{ϕ_q,s_p} from a pixel X_{ij} .

- Notationally $\delta = (\delta_x, \delta_s, \delta_\phi) \in (\mathbb{R}^+)^3$.
- We consider (finite-dimensional) spaces of piecewise constant function

$$U_{\delta} := \operatorname{span}\{\chi_{X_{ij}}\}_{i,j \in [N_x]}, \qquad V_{\delta} := \operatorname{span}\{\chi_{\Phi_q \times S_p}\}_{q \in [N_{\phi}], p \in [N_s]}.$$

- Matrix implementation A can be associated with $\mathcal{R}_{\delta} \colon U_{\delta} \to V_{\delta}$.
- Entry $A_{qp,ij}$... weight attributed to the calculation of L_{ϕ_q,s_p} from a pixel X_{ij} .
- Note that $U_{\delta} \subset L^2(\Omega)$ and $V_{\delta} \subset L^2(S)$, so \mathcal{R}_{δ} can be compared to \mathcal{R} .

Given a weight-function $\omega \colon [0,\pi[\times \mathbb{R} \to \mathbb{R}$

Given a weight-function $\omega \colon [0,\pi[\times \mathbb{R} \to \mathbb{R}$

Given a weight-function $\omega\colon [0,\pi[\times\mathbb{R}\to\mathbb{R}$ we define the convolutional Radon transform

Given a weight-function $\omega\colon [0,\pi[\times\mathbb{R}\to\mathbb{R}$ we define the convolutional Radon transform

Given a weight-function $\omega\colon [0,\pi[\times\mathbb{R}\to\mathbb{R}$ we define the convolutional Radon transform

$$[\mathcal{R}^{\omega}_{\delta} f](\phi, s) := \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_{s}-1} \chi_{\Phi_{q} \times S_{p}}(\phi, s) \sum_{i,j=0}^{N_{x}-1} \omega(\phi_{q}, x_{ij} \cdot \vartheta_{q} - s_{p}) \int_{X_{ij}} f(x) \, \mathrm{d}x,$$

Given a weight-function $\omega\colon [0,\pi[\times\mathbb{R}\to\mathbb{R}$ we define the convolutional Radon transform

$$[\mathcal{R}^{\omega}_{\delta} f](\phi, s) := \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_{s}-1} \chi_{\Phi_{q} \times S_{p}}(\phi, s) \sum_{i,j=0}^{N_{x}-1} \omega(\phi_{q}, x_{ij} \cdot \vartheta_{q} - s_{p}) \int_{X_{ij}} f(x) \, \mathrm{d}x,$$

Given a weight-function $\omega\colon [0,\pi[\times\mathbb{R}\to\mathbb{R}$ we define the convolutional Radon transform

$$[\mathcal{R}^{\omega}_{\delta} f](\phi, s) := \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_{s}-1} \chi_{\Phi_{q} \times S_{p}}(\phi, s) \sum_{i,j=0}^{N_{x}-1} \omega(\phi_{q}, x_{ij} \cdot \vartheta_{q} - s_{p}) \int_{X_{ij}} f(x) \, \mathrm{d}x,$$

$$[\mathcal{R}_{\delta}^{\omega*}g](x) := \sum_{i,j=0}^{N_x - 1} \chi_{X_{ij}}(x) \sum_{q=0}^{N_\phi - 1} \sum_{p=0}^{N_s - 1} \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p) \int_{\Phi_q \times S_p} g(\phi, s) \,\mathrm{d}(\phi, s).$$

Given a weight-function $\omega\colon [0,\pi[\times\mathbb{R}\to\mathbb{R}$ we define the convolutional Radon transform

$$[\mathcal{R}^{\omega}_{\delta} f](\phi,s) := \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_{s}-1} \chi_{\Phi_{q} \times S_{p}}(\phi,s) \sum_{i,j=0}^{N_{x}-1} \omega(\phi_{q}, x_{ij} \cdot \vartheta_{q} - s_{p}) \int_{X_{ij}} f(x) \,\mathrm{d}x,$$

and the convolutional backprojection

$$[\mathcal{R}_{\delta}^{\omega*}g](x) := \sum_{i,j=0}^{N_x - 1} \chi_{X_{ij}}(x) \sum_{q=0}^{N_\phi - 1} \sum_{p=0}^{N_s - 1} \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p) \int_{\Phi_q \times S_p} g(\phi, s) \, \mathrm{d}(\phi, s).$$

• Matrix entry $A_{qp,ij} = \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p).$

Given a weight-function $\omega\colon [0,\pi[\times\mathbb{R}\to\mathbb{R}$ we define the convolutional Radon transform

$$[\mathcal{R}^{\omega}_{\delta} f](\phi,s) := \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_{s}-1} \chi_{\Phi_{q} \times S_{p}}(\phi,s) \sum_{i,j=0}^{N_{x}-1} \omega(\phi_{q}, \underline{x_{ij}} \cdot \vartheta_{q} - \underline{s_{p}}) \int_{X_{ij}} f(x) \,\mathrm{d}x,$$

and the convolutional backprojection

$$[\mathcal{R}^{\omega*}_{\delta}g](x) := \sum_{i,j=0}^{N_x - 1} \chi_{X_{ij}}(x) \sum_{q=0}^{N_\phi - 1} \sum_{p=0}^{N_s - 1} \omega(\phi_q, \mathbf{x}_{ij} \cdot \boldsymbol{\vartheta}_q - \mathbf{s}_p) \int_{\Phi_q \times S_p} g(\phi, s) \, \mathrm{d}(\phi, s).$$

• Matrix entry $A_{qp,ij} = \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p).$

• The term $x_{ij} \cdot \vartheta_q - s_p$ denotes the normal distance from x_{ij} to L_{ϕ_q,s_p} .

Given a weight-function $\omega\colon [0,\pi[\times\mathbb{R}\to\mathbb{R}$ we define the convolutional Radon transform

$$[\mathcal{R}^{\omega}_{\delta} f](\phi,s) := \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_{s}-1} \chi_{\Phi_{q} \times S_{p}}(\phi,s) \sum_{i,j=0}^{N_{x}-1} \omega(\phi_{q}, x_{ij} \cdot \vartheta_{q} - s_{p}) \int_{X_{ij}} f(x) \,\mathrm{d}x,$$

and the convolutional backprojection

$$[\mathcal{R}^{\omega*}_{\delta}g](x) := \sum_{i,j=0}^{N_x - 1} \chi_{X_{ij}}(x) \sum_{q=0}^{N_\phi - 1} \sum_{p=0}^{N_s - 1} \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p) \int_{\Phi_q \times S_p} g(\phi, s) \,\mathrm{d}(\phi, s).$$

• Matrix entry $A_{qp,ij} = \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p).$

• The term $x_{ij} \cdot \vartheta_q - s_p$ denotes the normal distance from x_{ij} to L_{ϕ_q,s_p} .

Given a weight-function $\omega\colon [0,\pi[\times\mathbb{R}\to\mathbb{R}$ we define the convolutional Radon transform

$$[\mathcal{R}^{\omega}_{\delta} f](\phi,s) := \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_{s}-1} \chi_{\Phi_{q} \times S_{p}}(\phi,s) \sum_{i,j=0}^{N_{x}-1} \omega(\phi_{q}, x_{ij} \cdot \vartheta_{q} - s_{p}) \int_{X_{ij}} f(x) \,\mathrm{d}x,$$

$$[\mathcal{R}^{\omega*}_{\delta}g](x) := \sum_{i,j=0}^{N_x - 1} \chi_{X_{ij}}(x) \sum_{q=0}^{N_\phi - 1} \sum_{p=0}^{N_s - 1} \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p) \int_{\Phi_q \times S_p} g(\phi, s) \,\mathrm{d}(\phi, s).$$

- Matrix entry $A_{qp,ij} = \omega(\phi_q, x_{ij} \cdot \vartheta_q s_p).$
- The term $x_{ij} \cdot \vartheta_q s_p$ denotes the normal distance from x_{ij} to L_{ϕ_q,s_p} .
- Discretization of $[\mathcal{R}^{\omega}f](\phi,s) = ([\mathcal{R}f] *_s \omega)(\phi,s) = \int_{\mathbb{R}} [\mathcal{R}f](\phi,t)\omega(\phi,s-t) \, \mathrm{d}t.$

Given a weight-function $\omega\colon [0,\pi[\times\mathbb{R}\to\mathbb{R}$ we define the convolutional Radon transform

$$[\mathcal{R}^{\omega}_{\delta} f](\phi, s) := \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_{s}-1} \chi_{\Phi_{q} \times S_{p}}(\phi, s) \sum_{i,j=0}^{N_{x}-1} \omega(\phi_{q}, x_{ij} \cdot \vartheta_{q} - s_{p}) \int_{X_{ij}} f(x) \, \mathrm{d}x,$$

$$[\mathcal{R}^{\omega*}_{\delta}g](x) := \sum_{i,j=0}^{N_x - 1} \chi_{X_{ij}}(x) \sum_{q=0}^{N_\phi - 1} \sum_{p=0}^{N_s - 1} \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p) \int_{\Phi_q \times S_p} g(\phi, s) \,\mathrm{d}(\phi, s).$$

- Matrix entry $A_{qp,ij} = \omega(\phi_q, x_{ij} \cdot \vartheta_q s_p).$
- The term $x_{ij} \cdot \vartheta_q s_p$ denotes the normal distance from x_{ij} to L_{ϕ_q,s_p} .
- Discretization of $[\mathcal{R}^{\omega}f](\phi,s) = ([\mathcal{R}f] *_s \omega)(\phi,s) = \int_{\mathbb{R}} [\mathcal{R}f](\phi,t)\omega(\phi,s-t) \, \mathrm{d}t.$

Given a weight-function $\omega\colon [0,\pi[\times\mathbb{R}\to\mathbb{R}$ we define the convolutional Radon transform

$$[\mathcal{R}^{\omega}_{\delta} f](\phi,s) := \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_{s}-1} \chi_{\Phi_{q} \times S_{p}}(\phi,s) \sum_{i,j=0}^{N_{x}-1} \omega(\phi_{q}, x_{ij} \cdot \vartheta_{q} - s_{p}) \int_{X_{ij}} f(x) \,\mathrm{d}x,$$

$$[\mathcal{R}^{\omega*}_{\delta}g](x) := \sum_{i,j=0}^{N_x - 1} \chi_{X_{ij}}(x) \sum_{q=0}^{N_\phi - 1} \sum_{p=0}^{N_s - 1} \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p) \int_{\Phi_q \times S_p} g(\phi, s) \,\mathrm{d}(\phi, s).$$

- Matrix entry $A_{qp,ij} = \omega(\phi_q, x_{ij} \cdot \vartheta_q s_p).$
- The term $x_{ij} \cdot \vartheta_q s_p$ denotes the normal distance from x_{ij} to L_{ϕ_q,s_p} .
- Discretization of $[\mathcal{R}^{\omega}f](\phi,s) = ([\mathcal{R}f] *_s \omega)(\phi,s) = \int_{\mathbb{R}} [\mathcal{R}f](\phi,t)\omega(\phi,s-t) \, \mathrm{d}t.$
- Note $\mathcal{R}^{\omega}_{\delta} \colon L^2(\Omega) \to L^2(\mathcal{S})$ and $\mathcal{R}^{\omega}_{\delta} \colon L^2(\mathcal{S}) \to L^2(\Omega)$ finite rank.

Ray-driven Radon transform

For $f_{\delta} = \sum_{i,j=0}^{N_x-1} f_{ij} \chi_{X_{ij}} \in U_{\delta}$ (i.e., constant with values f_{ij} on X_{ij}),

Ray-driven Radon transform

For $f_{\delta} = \sum_{i,j=0}^{N_x-1} f_{ij} \chi_{X_{ij}} \in U_{\delta}$ (i.e., constant with values f_{ij} on X_{ij}),

Ray-driven Radon transform

For $f_{\delta} = \sum_{i,j=0}^{N_x-1} f_{ij}\chi_{X_{ij}} \in U_{\delta}$ (i.e., constant with values f_{ij} on X_{ij}),

$$[\mathcal{R}f_{\delta}](\phi_q, s_p) = \int_{\Omega} f(x) \, \mathrm{d}\mathcal{H}^1 \, \sqcup \, L_{\phi_q, s_p}$$

DTU

Ray-driven Radon transform

For $f_{\delta} = \sum_{i,j=0}^{N_x-1} f_{ij} \chi_{X_{ij}} \in U_{\delta}$ (i.e., constant with values f_{ij} on X_{ij}),

$$[\mathcal{R}f_{\delta}](\phi_q, s_p) = \int_{\Omega} f(x) \, \mathrm{d}\mathcal{H}^1 \, \sqcup \, L_{\phi_q, s_p} = \sum_{i,j=0}^{N_x - 1} f_{ij} \int_{X_{ij}} 1 \, \mathrm{d}\mathcal{H}^1 \, \sqcup \, L_{\phi_q, s_p}$$

DTU

Ray-driven Radon transform

For $f_{\delta} = \sum_{i,j=0}^{N_x-1} f_{ij} \chi_{X_{ij}} \in U_{\delta}$ (i.e., constant with values f_{ij} on X_{ij}),

$$[\mathcal{R}f_{\delta}](\phi_q, s_p) = \int_{\Omega} f(x) \, \mathrm{d}\mathcal{H}^1 \sqcup L_{\phi_q, s_p} = \sum_{i,j=0}^{N_x - 1} f_{ij} \int_{X_{ij}} 1 \, \mathrm{d}\mathcal{H}^1 \sqcup L_{\phi_q, s_p}$$
$$= \sum_{i,j=0}^{N_x - 1} f_{ij} \mathcal{H}^1(L_{\phi_q, s_p} \cap X_{ij})$$
Ray-driven Radon transform

For
$$f_{\delta} = \sum_{i,j=0}^{N_x-1} f_{ij} \chi_{X_{ij}} \in U_{\delta}$$
 (i.e., constant with values f_{ij} on X_{ij}),

$$[\mathcal{R}f_{\delta}](\phi_q, s_p) = \int_{\Omega} f(x) \, \mathrm{d}\mathcal{H}^1 \sqcup L_{\phi_q, s_p} = \sum_{i,j=0}^{N_x - 1} f_{ij} \int_{X_{ij}} 1 \, \mathrm{d}\mathcal{H}^1 \sqcup L_{\phi_q, s_p}$$
$$= \sum_{i,j=0}^{N_x - 1} f_{ij} \mathcal{H}^1(L_{\phi_q, s_p} \cap X_{ij})$$

We would like $\delta_x^2 \omega_{\delta}^{\mathrm{rd}}(\phi_q, x_{ij} \cdot \vartheta_q - s_p) = \mathcal{H}^1(L_{\phi_q, s_p} \cap X_{ij}).$

Ray-driven Radon transform

For
$$f_\delta = \sum_{i,j=0}^{N_x-1} f_{ij} \chi_{X_{ij}} \in U_\delta$$
 (i.e., constant with values f_{ij} on X_{ij}),

$$[\mathcal{R}f_{\delta}](\phi_{q}, s_{p}) = \int_{\Omega} f(x) \, \mathrm{d}\mathcal{H}^{1} \sqcup L_{\phi_{q}, s_{p}} = \sum_{i,j=0}^{N_{x}-1} f_{ij} \int_{X_{ij}} 1 \, \mathrm{d}\mathcal{H}^{1} \sqcup L_{\phi_{q}, s_{p}}$$
$$= \sum_{i,j=0}^{N_{x}-1} f_{ij}\mathcal{H}^{1}(L_{\phi_{q}, s_{p}} \cap X_{ij}) =: [\mathcal{R}_{\delta}^{\mathrm{rd}} f_{\delta}](\phi_{q}, s_{p})$$

We would like $\delta_x^2 \, \omega_{\delta}^{\mathrm{rd}}(\phi_q, x_{ij} \cdot \vartheta_q - s_p) = \mathcal{H}^1(L_{\phi_q, s_p} \cap X_{ij}).$

Ray-driven Radon transform

For
$$f_{\delta} = \sum_{i,j=0}^{N_x-1} f_{ij} \chi_{X_{ij}} \in U_{\delta}$$
 (i.e., constant with values f_{ij} on X_{ij}),

$$\begin{aligned} [\mathcal{R}f_{\delta}](\phi_{q}, s_{p}) &= \int_{\Omega} f(x) \, \mathrm{d}\mathcal{H}^{1} \sqcup L_{\phi_{q}, s_{p}} = \sum_{i, j=0}^{N_{x}-1} f_{ij} \int_{X_{ij}} 1 \, \mathrm{d}\mathcal{H}^{1} \sqcup L_{\phi_{q}, s_{p}} \\ &= \sum_{i, j=0}^{N_{x}-1} f_{ij} \mathcal{H}^{1}(L_{\phi_{q}, s_{p}} \cap X_{ij}) =: [\mathcal{R}_{\delta}^{\mathrm{rd}} f_{\delta}](\phi_{q}, s_{p}) \end{aligned}$$

We would like $\delta_x^2 \, \omega_{\delta}^{\mathrm{rd}}(\phi_q, x_{ij} \cdot \vartheta_q - s_p) = \mathcal{H}^1(L_{\phi_q, s_p} \cap X_{ij}).$

Convolutional Discretization Schemes Ray-driven weights

DTU

Definition (Ray-driven weights)

Given δ and $\phi \in [0, \pi[$, we set $\overline{s}(\phi) := \frac{\delta_x}{2}(|\cos(\phi)| + |\sin(\phi)|)$, $\underline{s}(\phi) := \frac{\delta_x}{2}(||\cos(\phi)| - |\sin(\phi)||)$ and $\kappa(\phi) := \min\left\{\frac{1}{|\cos(\phi)|}, \frac{1}{|\sin(\phi)|}\right\}$. We define the ray-driven weight function for $t \in \mathbb{R}$ according to

$$\omega^{\mathrm{rd}}_{\delta}(\phi,t) := \frac{1}{\delta_x} \begin{cases} \kappa(\phi) & \text{if } |t| < \underline{s}(\phi), \\ \frac{\overline{s}(\phi) - |t|}{\delta_x |\cos(\phi) \sin(\phi)|} & \text{if } |t| \in [\underline{s}(\phi), \overline{s}(\phi)[, \\ \frac{1}{2} & \text{if } \phi \in \{0, \frac{\pi}{2}\} \text{ and } |t| = \overline{s}(\phi), \\ 0 & \text{else.} \end{cases}$$

Convolutional Discretization Schemes Ray-driven weights

Definition (Ray-driven weights)

Given δ and $\phi \in [0, \pi[$, we set $\overline{s}(\phi) := \frac{\delta_x}{2}(|\cos(\phi)| + |\sin(\phi)|)$, $\underline{s}(\phi) := \frac{\delta_x}{2}(||\cos(\phi)| - |\sin(\phi)||)$ and $\kappa(\phi) := \min\left\{\frac{1}{|\cos(\phi)|}, \frac{1}{|\sin(\phi)|}\right\}$. We define the ray-driven weight function for $t \in \mathbb{R}$ according to

$$\begin{split} \boldsymbol{\omega}^{\mathrm{rd}}_{\delta}(\phi,t) &:= \frac{1}{\delta_x} \begin{cases} \kappa(\phi) & \text{if } |t| < \underline{s}(\phi), \\ \frac{\overline{s}(\phi) - |t|}{\delta_x |\cos(\phi)\sin(\phi)|} & \text{if } |t| \in [\underline{s}(\phi), \overline{s}(\phi)[, \\ \frac{1}{2} & \text{if } \phi \in \{0, \frac{\pi}{2}\} \text{ and } |t| = \overline{s}(\phi), \\ 0 & \text{else.} \end{cases} \end{split}$$

Convolutional Discretization Schemes Pixel-driven approach

$$[\mathcal{R}^*g](x_{ij}) = \int_{[-\pi,\pi[} g(\phi, x_{ij} \cdot \vartheta(\phi)) \,\mathrm{d}\phi$$

DTU

Convolutional Discretization Schemes Pixel-driven approach

$$[\mathcal{R}^*g](x_{ij}) = \int_{[-\pi,\pi[} g(\phi, x_{ij} \cdot \vartheta(\phi)) \,\mathrm{d}\phi \overset{p.w.}{\underset{const.}{\approx}} \sum_{q=0}^{N_{\phi}-1} |\Phi_q| g(\phi_q, x_{ij} \cdot \vartheta_q)$$

Convolutional Discretization Schemes Pixel-driven approach

$$[\mathcal{R}^*g](x_{ij}) = \int_{[-\pi,\pi[} g(\phi, x_{ij} \cdot \vartheta(\phi)) \,\mathrm{d}\phi \underset{const.}{\overset{p.w.}{\approx}} \sum_{q=0}^{N_{\phi}-1} |\Phi_q| g(\phi_q, x_{ij} \cdot \vartheta_q)$$

DTU

$$[\mathcal{R}^*g](x_{ij}) = \int_{[-\pi,\pi[} g(\phi, x_{ij} \cdot \vartheta(\phi)) \,\mathrm{d}\phi \overset{p.w.}{\underset{const.}{\overset{N_{\phi}-1}{\approx}}} \sum_{q=0}^{N_{\phi}-1} |\Phi_q| g(\phi_q, x_{ij} \cdot \vartheta_q)$$
$$\underset{interp.}{\overset{lin.}{\approx}} \sum_{q=1}^{N_{\phi}-1} \frac{|\Phi_q|}{\delta_s} \sum_{\{p:|x_{ij} \cdot \vartheta_q - s_p| \le \delta_s\}} (\delta_s - |x_{ij} \cdot \vartheta_q - s_p|) g_{qp}$$

3.7

$$\begin{split} [\mathcal{R}^*g](x_{ij}) &= \int_{[-\pi,\pi[} g(\phi, x_{ij} \cdot \vartheta(\phi)) \,\mathrm{d}\phi \overset{p.w.}{\underset{const.}{\approx}} \sum_{q=0}^{N_{\phi}-1} |\Phi_q| g(\phi_q, x_{ij} \cdot \vartheta_q) \\ & \underset{\substack{in.\\ \approx}{\approx}}{\underset{interp.}{\overset{N_{\phi}-1}{\approx}}} \frac{|\Phi_q|}{\delta_s} \sum_{\{p:|x_{ij} \cdot \vartheta_q - s_p| \leq \delta_s\}} (\delta_s - |x_{ij} \cdot \vartheta_q - s_p|) g_{qp} \\ & \omega_{\delta}^{\mathrm{pd}}(\phi, t) = \omega_{\delta}^{\mathrm{pd}}(t) := \frac{1}{\delta_s^2} \max\{\delta_s - |t|, 0\} \quad \text{ for } \phi \in [0, \pi[\,, \ t \in \mathbb{R}]. \end{split}$$

DTU

$$\begin{split} [\mathcal{R}^*g](x_{ij}) &= \int_{[-\pi,\pi[} g(\phi, x_{ij} \cdot \vartheta(\phi)) \,\mathrm{d}\phi \underset{const.}{\overset{p.w.}{\approx}} \sum_{q=0}^{N_{\phi}-1} |\Phi_q| g(\phi_q, x_{ij} \cdot \vartheta_q) \\ & \lim_{\substack{lin.\\interp.}} \sum_{q=1}^{N_{\phi}-1} \frac{|\Phi_q|}{\delta_s} \sum_{\{p:|x_{ij} \cdot \vartheta_q - s_p| \leq \delta_s\}} (\delta_s - |x_{ij} \cdot \vartheta_q - s_p|) g_{qp} \\ & \omega_{\delta}^{\mathrm{pd}}(\phi, t) = \omega_{\delta}^{\mathrm{pd}}(t) := \frac{1}{\delta_s^2} \max\{\delta_s - |t|, 0\} \quad \text{ for } \phi \in [0, \pi[\,, t \in \mathbb{R}. \end{split}$$

Pixel-driven approach

$$\begin{aligned} \mathcal{R}^*g](x_{ij}) &= \int_{[-\pi,\pi[} g(\phi, x_{ij} \cdot \vartheta(\phi)) \,\mathrm{d}\phi \underset{\text{const.}}{\overset{p.w.}{\approx}} \sum_{q=0}^{N_{\phi}-1} |\Phi_q| g(\phi_q, x_{ij} \cdot \vartheta_q) \\ & \underset{\text{interp.}}{\overset{lin.}{\approx}} \sum_{q=1}^{N_{\phi}-1} \frac{|\Phi_q|}{\delta_s} \sum_{\{p: |x_{ij} \cdot \vartheta_q - s_p| \le \delta_s\}} (\delta_s - |x_{ij} \cdot \vartheta_q - s_p|) g_{qp} := [\mathcal{R}_{\delta}^{\mathrm{pd}^*} g]_{ij} \\ & \omega_{\delta}^{\mathrm{pd}}(\phi, t) = \omega_{\delta}^{\mathrm{pd}}(t) := \frac{1}{\delta_s^2} \max\{\delta_s - |t|, 0\} \quad \text{ for } \phi \in [0, \pi[, t \in \mathbb{R}. \end{aligned}$$

$$\begin{split} [\mathcal{R}^*g](x_{ij}) &= \int_{[-\pi,\pi[} g(\phi, x_{ij} \cdot \vartheta(\phi)) \,\mathrm{d}\phi \overset{p.w.}{\underset{const.}{\overset{N_{\phi}-1}{\approx}} \sum_{q=0}^{N_{\phi}-1} |\Phi_q| g(\phi_q, x_{ij} \cdot \vartheta_q) \\ & \underset{interp.}{\overset{lin.}{\approx}} \sum_{q=1}^{N_{\phi}-1} \frac{|\Phi_q|}{\delta_s} \sum_{\{p: |x_{ij} \cdot \vartheta_q - s_p| \leq \delta_s\}} (\delta_s - |x_{ij} \cdot \vartheta_q - s_p|) g_{qp} := [\mathcal{R}_{\delta}^{\mathrm{pd}^*}g]_{ij} \\ & \omega_{\delta}^{\mathrm{pd}}(\phi, t) = \omega_{\delta}^{\mathrm{pd}}(t) := \frac{1}{\delta_s^2} \max\{\delta_s - |t|, 0\} \quad \text{ for } \phi \in [0, \pi[\,, \ t \in \mathbb{R}. \end{split}$$

3.7

• Backprojection approximated via sums and linear interpolation.

Convergence Results Outline

- The Radon Transform
- Convolutional Discretization Schemes
- Convergence Results
- Numerical Experiments
- The L^2 Optimal Discretization

DTU

Theorem

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

DTU

Theorem

Let $(\delta^n)_{n \in \mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n \in \mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

DTU

Theorem

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n\to\infty} 0$ (componentwise) and let c > 0 be a constant.

Theorem

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

Theorem

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

• If $\frac{\delta_s^n}{\delta_x^n} \leq c$ for all $n \in \mathbb{N}$, then,

Theorem

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

• If $\frac{\delta_s^n}{\delta_x^n} \leq c$ for all $n \in \mathbb{N}$, then,

DTU

Theorem

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

• If $\frac{\delta_n^s}{\delta_n^r} \leq c$ for all $n \in \mathbb{N}$, then, for any $f \in L^2(\Omega)$, we have

$$\lim_{n \to \infty} \|\mathcal{R}f - \mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}} f\|_{L^{2}(\mathcal{S})} = 0.$$
 (convrd)

DTU

Theorem

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

• If $\frac{\delta_n^s}{\delta_n^s} \leq c$ for all $n \in \mathbb{N}$, then, for any $f \in L^2(\Omega)$, we have

$$\lim_{n \to \infty} \|\mathcal{R}f - \mathcal{R}_{\delta^{n}}^{\mathrm{rd}} f\|_{L^{2}(\mathcal{S})} = 0.$$
 (convrd)

DTU

Theorem

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

• If $\frac{\delta_n^s}{\delta_n^r} \leq c$ for all $n \in \mathbb{N}$, then, for any $f \in L^2(\Omega)$, we have

$$\lim_{n \to \infty} \|\mathcal{R}f - \mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}} f\|_{L^2(\mathcal{S})} = 0.$$
 (convrd)

Theorem

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n\to\infty} 0$ (componentwise) and let c > 0 be a constant.

• If $\frac{\delta_n^s}{\delta_n^s} \leq c$ for all $n \in \mathbb{N}$, then, for any $f \in L^2(\Omega)$, we have

$$\lim_{n \to \infty} \|\mathcal{R}f - \mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}} f\|_{L^{2}(\mathcal{S})} = 0.$$
 (convrd)

• If the sequence
$$(\delta^n)_{n\in\mathbb{N}}$$
 satisfies $\frac{\delta_s^n}{\delta_x^n} \stackrel{n \to \infty}{\to} 0$

Theorem

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n\to\infty} 0$ (componentwise) and let c > 0 be a constant.

• If $\frac{\delta_n^s}{\delta_n^s} \leq c$ for all $n \in \mathbb{N}$, then, for any $f \in L^2(\Omega)$, we have

$$\lim_{n \to \infty} \|\mathcal{R}f - \mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}} f\|_{L^{2}(\mathcal{S})} = 0.$$
 (convrd)

• If the sequence
$$(\delta^n)_{n\in\mathbb{N}}$$
 satisfies $\frac{\delta^n_s}{\delta^n_x} \stackrel{n \to \infty}{\to} 0$

Theorem

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

• If $\frac{\delta_n^s}{\delta_n^s} \leq c$ for all $n \in \mathbb{N}$, then, for any $f \in L^2(\Omega)$, we have

$$\lim_{n \to \infty} \|\mathcal{R}f - \mathcal{R}_{\delta^{\mathrm{n}}}^{\mathrm{rd}} f\|_{L^{2}(\mathcal{S})} = 0.$$
 (convrd)

• If the sequence $(\delta^n)_{n\in\mathbb{N}}$ satisfies $\frac{\delta_s^n}{\delta_x^n} \xrightarrow{n\to\infty} 0$, then, for each $g \in L^2(\mathcal{S})$, we have

$$\lim_{n \to \infty} \|\mathcal{R}^* g - \mathcal{R}_{\delta^n}^{\mathrm{rd}\,^*} g\|_{L^2(\Omega)} = 0.$$
 (conv^{rd*})

Theorem

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

• If $\frac{\delta_n^s}{\delta_n^s} \leq c$ for all $n \in \mathbb{N}$, then, for any $f \in L^2(\Omega)$, we have

$$\lim_{n \to \infty} \|\mathcal{R}f - \mathcal{R}_{\delta^{\mathrm{n}}}^{\mathrm{rd}} f\|_{L^{2}(\mathcal{S})} = 0.$$
 (convrd)

• If the sequence $(\delta^n)_{n \in \mathbb{N}}$ satisfies $\frac{\delta_s^n}{\delta_x^n} \xrightarrow{n \to \infty} 0$, then, for each $g \in L^2(\mathcal{S})$, we have

$$\lim_{n \to \infty} \|\mathcal{R}^* g - \mathcal{R}_{\delta^n}^{\mathrm{rd}\,^*} g\|_{L^2(\Omega)} = 0.$$
 (conv^{rd*})

Theorem

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

• If $\frac{\delta_n^s}{\delta_n^s} \leq c$ for all $n \in \mathbb{N}$, then, for any $f \in L^2(\Omega)$, we have

$$\lim_{n \to \infty} \|\mathcal{R}f - \mathcal{R}_{\delta^{\mathrm{n}}}^{\mathrm{rd}} f\|_{L^{2}(\mathcal{S})} = 0.$$
 (convrd)

• If the sequence $(\delta^n)_{n\in\mathbb{N}}$ satisfies $\frac{\delta_s^n}{\delta_x^n} \xrightarrow{n\to\infty} 0$, then, for each $g \in L^2(\mathcal{S})$, we have

 $\lim_{n \to \infty} \|\mathcal{R}^* g - \mathcal{R}^{\mathrm{rd}\,*}_{\delta^n} g\|_{L^2(\Omega)} = 0. \tag{conv^{\mathrm{rd}\,*}}$

Theorem

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

• If $\frac{\delta_n^s}{\delta_n^s} \leq c$ for all $n \in \mathbb{N}$, then, for any $f \in L^2(\Omega)$, we have

$$\lim_{n \to \infty} \|\mathcal{R}f - \mathcal{R}_{\delta^{\mathrm{n}}}^{\mathrm{rd}} f\|_{L^{2}(\mathcal{S})} = 0.$$
 (convrd)

• If the sequence $(\delta^n)_{n\in\mathbb{N}}$ satisfies $\frac{\delta_s^n}{\delta_x^n} \xrightarrow{n\to\infty} 0$, then, for each $g \in L^2(\mathcal{S})$, we have

$$\lim_{n \to \infty} \|\mathcal{R}^* g - \mathcal{R}_{\delta^n}^{\mathrm{rd}^*} g\|_{L^2(\Omega)} = 0.$$
 (conv^{rd*})

• If
$$\frac{\delta_x^n}{\delta_s^n} \leq c$$
 for all $n \in \mathbb{N}$

Theorem

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

• If $\frac{\delta_n^s}{\delta_n^s} \leq c$ for all $n \in \mathbb{N}$, then, for any $f \in L^2(\Omega)$, we have

$$\lim_{n \to \infty} \|\mathcal{R}f - \mathcal{R}_{\delta^{\mathrm{n}}}^{\mathrm{rd}} f\|_{L^{2}(\mathcal{S})} = 0.$$
 (convrd)

• If the sequence $(\delta^n)_{n\in\mathbb{N}}$ satisfies $\frac{\delta_s^n}{\delta_x^n} \xrightarrow{n\to\infty} 0$, then, for each $g \in L^2(\mathcal{S})$, we have

$$\lim_{n \to \infty} \|\mathcal{R}^* g - \mathcal{R}_{\delta^n}^{\mathrm{rd}^*} g\|_{L^2(\Omega)} = 0.$$
 (conv^{rd*})

• If
$$\frac{\delta^n_x}{\delta^n_s} \leq c$$
 for all $n \in \mathbb{N}$

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

• If $\frac{\delta_n^s}{\delta_n^s} \leq c$ for all $n \in \mathbb{N}$, then, for any $f \in L^2(\Omega)$, we have

$$\lim_{n \to \infty} \|\mathcal{R}f - \mathcal{R}_{\delta^{\mathrm{n}}}^{\mathrm{rd}} f\|_{L^{2}(\mathcal{S})} = 0.$$
 (convrd)

• If the sequence $(\delta^n)_{n\in\mathbb{N}}$ satisfies $\frac{\delta_s^n}{\delta_x^n} \xrightarrow{n\to\infty} 0$, then, for each $g \in L^2(\mathcal{S})$, we have

$$\lim_{n \to \infty} \|\mathcal{R}^* g - \mathcal{R}_{\delta^n}^{\mathrm{rd}^*} g\|_{L^2(\Omega)} = 0.$$
 (conv^{rd*})

• If $\frac{\delta_x^n}{\delta_s^n} \leq c$ for all $n \in \mathbb{N}$, then, for each $g \in L^2(\mathcal{S})$, we have

$$\lim_{n \to \infty} \|\mathcal{R}^* g - \mathcal{R}_{\delta^n}^{\mathrm{pd}^*} g\|_{L^2(\Omega)} = 0.$$
 (conv^{pd*})

16 DTU Compute

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

• If $\frac{\delta_n^s}{\delta_n^s} \leq c$ for all $n \in \mathbb{N}$, then, for any $f \in L^2(\Omega)$, we have

$$\lim_{n \to \infty} \|\mathcal{R}f - \mathcal{R}_{\delta^{\mathrm{n}}}^{\mathrm{rd}} f\|_{L^{2}(\mathcal{S})} = 0.$$
 (convrd)

• If the sequence $(\delta^n)_{n\in\mathbb{N}}$ satisfies $\frac{\delta_s^n}{\delta_x^n} \xrightarrow{n\to\infty} 0$, then, for each $g \in L^2(\mathcal{S})$, we have

$$\lim_{n \to \infty} \|\mathcal{R}^* g - \mathcal{R}_{\delta^n}^{\mathrm{rd}^*} g\|_{L^2(\Omega)} = 0.$$
 (conv^{rd*})

• If
$$\frac{\delta_n^n}{\delta_s^n} \leq c$$
 for all $n \in \mathbb{N}$, then, for each $g \in L^2(\mathcal{S})$, we have

$$\lim_{n \to \infty} \|\mathcal{R}^* g - \mathcal{R}_{\delta^n}^{\mathrm{pd}^*} g\|_{L^2(\Omega)} = 0.$$
 (conv^{pd*})

16 DTU Compute

Let $(\delta^n)_{n\in\mathbb{N}} = (\delta^n_x, \delta^n_\phi, \delta^n_s)_{n\in\mathbb{N}}$ be a sequence of discretization parameters with $\delta^n \xrightarrow{n \to \infty} 0$ (componentwise) and let c > 0 be a constant.

• If $\frac{\delta_n^s}{\delta_n^s} \leq c$ for all $n \in \mathbb{N}$, then, for any $f \in L^2(\Omega)$, we have

$$\lim_{n \to \infty} \|\mathcal{R}f - \mathcal{R}_{\delta^{\mathrm{n}}}^{\mathrm{rd}} f\|_{L^{2}(\mathcal{S})} = 0.$$
 (convrd)

• If the sequence $(\delta^n)_{n\in\mathbb{N}}$ satisfies $\frac{\delta_s^n}{\delta_x^n} \xrightarrow{n\to\infty} 0$, then, for each $g \in L^2(\mathcal{S})$, we have

$$\lim_{n \to \infty} \|\mathcal{R}^* g - \mathcal{R}_{\delta^n}^{\mathrm{rd}^*} g\|_{L^2(\Omega)} = 0.$$
 (conv^{rd*})

• If $\frac{\delta_x^n}{\delta_s^n} \leq c$ for all $n \in \mathbb{N}$, then, for each $g \in L^2(\mathcal{S})$, we have

$$\lim_{n \to \infty} \|\mathcal{R}^*g - \mathcal{R}^{\mathrm{pd}^*}_{\delta^{\mathrm{n}}}g\|_{L^2(\Omega)} = 0.$$
 (conv^{pd*})

Convergence unmatched operator pairs 15.04.2025

16 DTU Compute

Convergence Results Interpretations

• In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.

Convergence Results Interpretations

• In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.

Convergence Results Interpretations

• In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}}_{\delta}^*$ converge.
- In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.
- The convergence is not necessarily uniform (i.e., in the operator norm).

- In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.
- The convergence is not necessarily uniform (i.e., in the operator norm).

- In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.
- The convergence is not necessarily uniform (i.e., in the operator norm).
- Convergence speed depends on specific f or g.

- In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.
- The convergence is not necessarily uniform (i.e., in the operator norm).
- Convergence speed depends on specific f or g.

Proof.

For smooth function $f \in \mathcal{C}^{\infty}_{c}(\Omega)$ we can show $\mathcal{R}^{\mathrm{rd}}_{\delta^{n}} f \to \mathcal{R}f$ using

- In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.
- The convergence is not necessarily uniform (i.e., in the operator norm).
- Convergence speed depends on specific f or g.

Proof.

For smooth function $f \in \mathcal{C}^{\infty}_{c}(\Omega)$ we can show $\mathcal{R}^{\mathrm{rd}}_{\delta^{n}} f \to \mathcal{R}f$ using

- In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.
- The convergence is not necessarily uniform (i.e., in the operator norm).
- Convergence speed depends on specific f or g.

Proof.

For smooth function $f \in \mathcal{C}^{\infty}_{c}(\Omega)$ we can show $\mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}} f \to \mathcal{R}f$ using

- In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.
- The convergence is not necessarily uniform (i.e., in the operator norm).
- Convergence speed depends on specific f or g.

Proof.

For smooth function $f \in \mathcal{C}^{\infty}_{c}(\Omega)$ we can show $\mathcal{R}^{\mathrm{rd}}_{\delta^{n}} f \to \mathcal{R}f$ using

• Taylor's theorem,

- In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.
- The convergence is not necessarily uniform (i.e., in the operator norm).
- Convergence speed depends on specific f or g.

Proof.

For smooth function $f \in \mathcal{C}^{\infty}_{c}(\Omega)$ we can show $\mathcal{R}^{\mathrm{rd}}_{\delta^{n}} f \to \mathcal{R}f$ using

- Taylor's theorem,
- The weight functions summing up in a suitble way.

- In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.
- The convergence is not necessarily uniform (i.e., in the operator norm).
- Convergence speed depends on specific f or g.

Proof.

For smooth function $f \in \mathcal{C}^{\infty}_{c}(\Omega)$ we can show $\mathcal{R}^{\mathrm{rd}}_{\delta^{n}} f \to \mathcal{R}f$ using

- Taylor's theorem,
- The weight functions summing up in a suitble way.

- In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.
- The convergence is not necessarily uniform (i.e., in the operator norm).
- Convergence speed depends on specific f or g.

Proof.

For smooth function $f \in \mathcal{C}^{\infty}_{c}(\Omega)$ we can show $\mathcal{R}^{\mathrm{rd}}_{\delta^{n}} f \to \mathcal{R}f$ using

- Taylor's theorem,
- The weight functions summing up in a suitble way.

- In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.
- The convergence is not necessarily uniform (i.e., in the operator norm).
- Convergence speed depends on specific f or g.

Proof.

For smooth function $f \in \mathcal{C}^{\infty}_{c}(\Omega)$ we can show $\mathcal{R}^{\mathrm{rd}}_{\delta^{n}} f \to \mathcal{R}f$ using

- Taylor's theorem,
- The weight functions summing up in a suitble way.

- In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.
- The convergence is not necessarily uniform (i.e., in the operator norm).
- Convergence speed depends on specific f or g.

Proof.

For smooth function $f \in \mathcal{C}^{\infty}_{c}(\Omega)$ we can show $\mathcal{R}^{\mathrm{rd}}_{\delta^{n}} f \to \mathcal{R}f$ using

- Taylor's theorem,
- The weight functions summing up in a suitble way.

For general $f \in L^2(\Omega)$, use diagonal argument

 $\|\mathcal{R}f - \mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}} f\|_{L^{2}(\mathcal{S})}$

- In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.
- The convergence is not necessarily uniform (i.e., in the operator norm).
- Convergence speed depends on specific f or g.

Proof.

For smooth function $f \in \mathcal{C}^{\infty}_{c}(\Omega)$ we can show $\mathcal{R}^{\mathrm{rd}}_{\delta^{n}} f \to \mathcal{R}f$ using

- Taylor's theorem,
- The weight functions summing up in a suitble way.

$$\|\mathcal{R}f - \mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}} f\|_{L^{2}(\mathcal{S})} \leq \|\mathcal{R}f - \mathcal{R}\tilde{f}\|_{L^{2}} + \|\mathcal{R}\tilde{f} - \mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}} \tilde{f}\|_{L^{2}} + \|\mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}} \tilde{f} - \mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}} f\|_{L^{2}}$$

- In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.
- The convergence is not necessarily uniform (i.e., in the operator norm).
- Convergence speed depends on specific f or g.

Proof.

For smooth function $f \in \mathcal{C}^{\infty}_{c}(\Omega)$ we can show $\mathcal{R}^{\mathrm{rd}}_{\delta^{n}} f \to \mathcal{R}f$ using

- Taylor's theorem,
- The weight functions summing up in a suitble way.

$$\begin{aligned} \|\mathcal{R}f - \mathcal{R}_{\delta^{n}}^{\mathrm{rd}} f\|_{L^{2}(\mathcal{S})} &\leq \|\mathcal{R}f - \mathcal{R}\tilde{f}\|_{L^{2}} + \|\mathcal{R}\tilde{f} - \mathcal{R}_{\delta^{n}}^{\mathrm{rd}} \tilde{f}\|_{L^{2}} + \|\mathcal{R}_{\delta^{n}}^{\mathrm{rd}} \tilde{f} - \mathcal{R}_{\delta^{n}}^{\mathrm{rd}} f\|_{L^{2}} \\ &\leq (\|\mathcal{R}\| + \|\mathcal{R}_{\delta^{n}}^{\mathrm{rd}}\|)\|f - \tilde{f}\|_{L^{2}} + \|\mathcal{R}\tilde{f} - \mathcal{R}_{\delta^{n}}^{\mathrm{rd}} \tilde{f}\|_{L^{2}} \end{aligned}$$

- In the balanced resolution case $\delta_x \approx \delta_s$, both $\mathcal{R}^{\mathrm{rd}}_{\delta}$ and $\mathcal{R}^{\mathrm{pd}^*}_{\delta}$ converge.
- The convergence is not necessarily uniform (i.e., in the operator norm).
- Convergence speed depends on specific f or g.

Proof.

For smooth function $f \in \mathcal{C}^{\infty}_{c}(\Omega)$ we can show $\mathcal{R}^{\mathrm{rd}}_{\delta^{n}} f \to \mathcal{R}f$ using

- Taylor's theorem,
- The weight functions summing up in a suitble way.

$$\begin{aligned} \|\mathcal{R}f - \mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}} f\|_{L^{2}(\mathcal{S})} &\leq \|\mathcal{R}f - \mathcal{R}\tilde{f}\|_{L^{2}} + \|\mathcal{R}\tilde{f} - \mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}} \tilde{f}\|_{L^{2}} + \|\mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}} \tilde{f} - \mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}} f\|_{L^{2}} \\ &\leq (\|\mathcal{R}\| + \|\mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}}\|)\|f - \tilde{f}\|_{L^{2}} + \|\mathcal{R}\tilde{f} - \mathcal{R}^{\mathrm{rd}}_{\delta^{\mathrm{n}}} \tilde{f}\|_{L^{2}} \leq \epsilon. \end{aligned}$$

Numerical Experiments **Outline**

DTU

- The Radon Transform
- Convolutional Discretization Schemes
- Convergence Results
- Numerical Experiments
- The L^2 Optimal Discretization

 $f=\chi_E$

 $f = \chi_E$

.

 $f = \chi_E$ with $[\mathcal{R}f](\phi, s) = \eta(\phi)\sqrt{1 - (\xi(\phi)s)^2} \approx \sqrt{1 - s^2}.$

19 DTU Compute

 $f = \chi_E$ with $[\mathcal{R}f](\phi, s) = \eta(\phi)\sqrt{1 - (\xi(\phi)s)^2} \approx \sqrt{1 - s^2}.$

19 DTU Compute

Numerical Experiments

Example 2

$\mathbf{1}(\phi, s) = 1$ constantly for all $(\phi, s) \in \mathcal{S}$ and $\mathcal{R}^* \mathbf{1} = \pi$.

Numerical Experiments

Example 2

 $\mathbf{1}(\phi, s) = 1$ constantly for all $(\phi, s) \in S$ and $\mathcal{R}^* \mathbf{1} = \pi$.

Numerical Experiments

Example 2

$\mathbf{1}(\phi, s) = 1$ constantly for all $(\phi, s) \in \mathcal{S}$ and $\mathcal{R}^* \mathbf{1} = \pi$.

Ray-Driven Backprojection Errors

DTU

Ray-Driven Backprojection Errors

Ray-Driven Backprojection Errors

rel. Error 0.0011

 $2 \cdot 10^{-2}$

0

Numerical Experiments Example 2 cont.

• Method for $\mathcal{R}^{\omega*}_{\delta} \mathbf{1}$ is precise if

Numerical Experiments Example 2 cont.

• Method for $\mathcal{R}^{\omega^*}_{\delta} \mathbf{1}$ is precise if

Numerical Experiments Example 2 cont.

• Method for $\mathcal{R}^{\omega*}_{\delta} \mathbf{1}$ is precise if

$$\sum_{q=0}^{N_{\phi}-1} |\Phi_q| \sum_{s=0}^{N_s-1} \delta_s \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p) \stackrel{\mathsf{per}}{=} [\mathcal{R}_{\delta}^{\omega*} \mathbf{1}](x_{ij}) \stackrel{!}{=} [\mathcal{R}^* \mathbf{1}](x_{ij}) = \pi.$$

Error with increasing N_{ϕ} , fixed $N_x = N_s = 2000$

.

Numerical Experiments Example 2 cont.

DTU

• Method for $\mathcal{R}^{\omega*}_{\delta} \mathbf{1}$ is precise if

 $\sum_{q=0}^{N_{\phi}-1} |\Phi_q| \sum_{s=0}^{N_s-1} \delta_s \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p) \stackrel{\mathsf{per}}{\underset{\mathsf{def}}{=}} [\mathcal{R}_{\delta}^{\omega*} \mathbf{1}](x_{ij}) \stackrel{!}{=} [\mathcal{R}^* \mathbf{1}](x_{ij}) = \pi.$

Error with increasing N_{ϕ} , fixed $N_x = N_s = 2000$

Numerical Experiments Example 2 cont.

• Method for $\mathcal{R}_{\delta}^{\omega^*} \mathbf{1}$ is precise if $\sum_{q=0}^{N_{\phi}-1} |\Phi_q| \sum_{s=0}^{N_s-1} \delta_s \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p) \stackrel{\mathsf{per}}{=}_{\mathsf{def}} [\mathcal{R}_{\delta}^{\omega^*} \mathbf{1}](x_{ij}) \stackrel{!}{=} [\mathcal{R}^* \mathbf{1}](x_{ij}) = \pi.$ • $g_{\hat{q}}(\phi, s) = \chi_{\Phi_{\hat{q}}}(\phi).$

Error with increasing N_{ϕ} , fixed $N_x = N_s = 2000$

Numerical Experiments Example 2 cont.

• Method for $\mathcal{R}_{\delta}^{\omega^*} \mathbf{1}$ is precise if $\sum_{q=0}^{N_{\phi}-1} |\Phi_q| \sum_{s=0}^{N_s-1} \delta_s \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p) \stackrel{\mathsf{per}}{=}_{\mathsf{def}} [\mathcal{R}_{\delta}^{\omega^*} \mathbf{1}](x_{ij}) \stackrel{!}{=} [\mathcal{R}^* \mathbf{1}](x_{ij}) = \pi.$ • $g_{\hat{q}}(\phi, s) = \chi_{\Phi_{\hat{q}}}(\phi).$

Error with increasing N_{ϕ} , fixed $N_x = N_s = 2000$

Numerical Experiments Example 2 cont.

- Method for $\mathcal{R}_{\delta}^{\omega^*} \mathbf{1}$ is precise if $\sum_{q=0}^{N_{\phi}-1} |\Phi_q| \sum_{s=0}^{N_s-1} \delta_s \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p) \stackrel{\text{per}}{\underset{\text{def}}{=}} [\mathcal{R}_{\delta}^{\omega^*} \mathbf{1}](x_{ij}) \stackrel{!}{=} [\mathcal{R}^* \mathbf{1}](x_{ij}) = \pi.$
- $g_{\hat{q}}(\phi,s) = \chi_{\Phi_{\hat{q}}}(\phi).$
- Method for $\mathcal{R}^{\omega^*}_{\delta}g_{\hat{q}}$ is precise if

Error with increasing N_{ϕ} , fixed $N_x = N_s = 2000$

Numerical Experiments Example 2 cont.

- Method for $\mathcal{R}_{\delta}^{\omega^*} \mathbf{1}$ is precise if $\sum_{q=0}^{N_{\phi}-1} |\Phi_q| \sum_{s=0}^{N_s-1} \delta_s \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p) \stackrel{\mathsf{per}}{\underset{\mathsf{def}}{=}} [\mathcal{R}_{\delta}^{\omega^*} \mathbf{1}](x_{ij}) \stackrel{!}{=} [\mathcal{R}^* \mathbf{1}](x_{ij}) = \pi.$
- $g_{\hat{q}}(\phi,s) = \chi_{\Phi_{\hat{q}}}(\phi).$
- Method for $\mathcal{R}^{\omega^*}_{\delta} g_{\hat{q}}$ is precise if

Error with increasing N_{ϕ} , fixed $N_x = N_s = 2000$

Numerical Experiments Example 2 cont.

- Method for $\mathcal{R}_{\delta}^{\omega^*} \mathbf{1}$ is precise if $\sum_{q=0}^{N_{\phi}-1} |\Phi_q| \sum_{s=0}^{N_s-1} \delta_s \omega(\phi_q, x_{ij} \cdot \vartheta_q - s_p) \stackrel{\text{per}}{=} [\mathcal{R}_{\delta}^{\omega^*} \mathbf{1}](x_{ij}) \stackrel{!}{=} [\mathcal{R}^* \mathbf{1}](x_{ij}) = \pi.$ • $g_{\hat{q}}(\phi, s) = \chi_{\Phi_{\hat{q}}}(\phi).$
- Method for $\mathcal{R}_{\delta}^{\omega^*} g_{\hat{q}}$ is precise if $\delta_s \sum_{p=0}^{N_s-1} \omega(\phi_{\hat{q}}, x_{ij} \cdot \vartheta_{\hat{q}} s_p) = 1.$

The L^2 Optimal Discretization Outline

DTU

- The Radon Transform
- Convolutional Discretization Schemes
- Convergence Results
- Numerical Experiments
- The L^2 Optimal Discretization

DTU

• \mathcal{R}_{δ} finite rank operator,

- \mathcal{R}_{δ} finite rank operator,
- $\mathcal{R}_{\delta} = \mathcal{P}_{W}^{*}A\mathcal{P}_{U}$,

DTU

- \mathcal{R}_{δ} finite rank operator,
- $\mathcal{R}_{\delta} = \mathcal{P}_{W}^{*}A\mathcal{P}_{U}$,
 - Finite dimensional $U \subset L^2(\Omega)$ and $W \subset L^2(\mathcal{S})$,
 - $A \colon U \to W$ and \mathcal{P} orthogonal projections.

- \mathcal{R}_{δ} finite rank operator,
- $\mathcal{R}_{\delta} = \mathcal{P}_{W}^{*}A\mathcal{P}_{U}$,
 - Finite dimensional $U \subset L^2(\Omega)$ and $W \subset L^2(\mathcal{S})$,
 - $A \colon U \to W$ and \mathcal{P} orthogonal projections.

• If $U = U_{\delta} = \operatorname{span}\{\chi_{X_{ij}}\}.$

- \mathcal{R}_{δ} finite rank operator,
- $\mathcal{R}_{\delta} = \mathcal{P}_{W}^{*}A\mathcal{P}_{U}$,
 - Finite dimensional $U \subset L^2(\Omega)$ and $W \subset L^2(\mathcal{S})$,
 - $A: U \to W$ and \mathcal{P} orthogonal projections.

• If
$$U = U_{\delta} = \text{span}\{\chi_{X_{ij}}\}$$
. (Basis vectors $u_{ij} = \chi_{X_{ij}}$)

- \mathcal{R}_{δ} finite rank operator,
- $\mathcal{R}_{\delta} = \mathcal{P}_{W}^{*}A\mathcal{P}_{U}$,
 - Finite dimensional $U \subset L^2(\Omega)$ and $W \subset L^2(\mathcal{S})$,
 - $A: U \to W$ and \mathcal{P} orthogonal projections.

• If
$$U = U_{\delta} = \text{span}\{\chi_{X_{ij}}\}$$
. (Basis vectors $u_{ij} = \chi_{X_{ij}}$)

- \mathcal{R}_{δ} finite rank operator,
- $\mathcal{R}_{\delta} = \mathcal{P}_{W}^{*}A\mathcal{P}_{U}$,
 - Finite dimensional $U \subset L^2(\Omega)$ and $W \subset L^2(\mathcal{S})$,
 - $A \colon U \to W$ and \mathcal{P} orthogonal projections.

- If $U = U_{\delta} = \text{span}\{\chi_{X_{ij}}\}$. (Basis vectors $u_{ij} = \chi_{X_{ij}}$)
- $[\mathcal{R}u_{ij}](\phi,s) = \omega_{\delta}^{\mathrm{rd}}(\phi, x_{ij} \cdot \vartheta_{\phi} s) =: w_{ij}$ which span W_{δ} .

- \mathcal{R}_{δ} finite rank operator,
- $\mathcal{R}_{\delta} = \mathcal{P}_{W}^{*}A\mathcal{P}_{U}$,
 - Finite dimensional $U \subset L^2(\Omega)$ and $W \subset L^2(\mathcal{S})$,
 - $A: U \to W$ and \mathcal{P} orthogonal projections.

- If $U = U_{\delta} = \text{span}\{\chi_{X_{ij}}\}$. (Basis vectors $u_{ij} = \chi_{X_{ij}}$)
- $[\mathcal{R}u_{ij}](\phi,s) = \omega_{\delta}^{\mathrm{rd}}(\phi, x_{ij} \cdot \vartheta_{\phi} s) =: w_{ij}$ which span W_{δ} .

- \mathcal{R}_{δ} finite rank operator,
- $\mathcal{R}_{\delta} = \mathcal{P}_{W}^{*}A\mathcal{P}_{U}$,
 - Finite dimensional $U \subset L^2(\Omega)$ and $W \subset L^2(\mathcal{S})$,
 - $A: U \to W$ and \mathcal{P} orthogonal projections.

- If $U = U_{\delta} = \text{span}\{\chi_{X_{ij}}\}$. (Basis vectors $u_{ij} = \chi_{X_{ij}}$)
- $[\mathcal{R}u_{ij}](\phi, s) = \omega_{\delta}^{\mathrm{rd}}(\phi, x_{ij} \cdot \vartheta_{\phi} s) =: w_{ij}$ which span W_{δ} .
- $W_{\delta} \not\subset V_{\delta} = \text{span } \{\chi_{\Phi_q \times S_p}\}.$

- \mathcal{R}_{δ} finite rank operator,
- $\mathcal{R}_{\delta} = \mathcal{P}_{W}^{*}A\mathcal{P}_{U}$,
 - Finite dimensional $U \subset L^2(\Omega)$ and $W \subset L^2(\mathcal{S})$,
 - $A: U \to W$ and \mathcal{P} orthogonal projections.

- If $U = U_{\delta} = \text{span}\{\chi_{X_{ij}}\}$. (Basis vectors $u_{ij} = \chi_{X_{ij}}$)
- $[\mathcal{R}u_{ij}](\phi,s) = \omega_{\delta}^{\mathrm{rd}}(\phi, x_{ij} \cdot \vartheta_{\phi} s) =: w_{ij}$ which span W_{δ} .
- $W_{\delta} \not\subset V_{\delta} = \text{span } \{\chi_{\Phi_q \times S_p}\}.$
- Given $g \in L^2(\mathcal{S}) \cap W_{\delta}$.

- \mathcal{R}_{δ} finite rank operator,
- $\mathcal{R}_{\delta} = \mathcal{P}_{W}^{*}A\mathcal{P}_{U}$,
 - Finite dimensional $U \subset L^2(\Omega)$ and $W \subset L^2(\mathcal{S})$,
 - $A: U \to W$ and \mathcal{P} orthogonal projections.

- If $U = U_{\delta} = \text{span}\{\chi_{X_{ij}}\}$. (Basis vectors $u_{ij} = \chi_{X_{ij}}$)
- $[\mathcal{R}u_{ij}](\phi,s) = \omega_{\delta}^{\mathrm{rd}}(\phi, x_{ij} \cdot \vartheta_{\phi} s) =: w_{ij}$ which span W_{δ} .
- $W_{\delta} \not\subset V_{\delta} = \text{span } \{\chi_{\Phi_q \times S_p}\}.$
- Given $g \in L^2(\mathcal{S}) \cap W_{\delta}$.
- $g = \sum_{ij=0}^{N_x-1} \beta_{ij} w_{ij}$,

- \mathcal{R}_{δ} finite rank operator,
- $\mathcal{R}_{\delta} = \mathcal{P}_{W}^{*}A\mathcal{P}_{U}$,
 - Finite dimensional $U \subset L^2(\Omega)$ and $W \subset L^2(S)$,
 - $A: U \to W$ and \mathcal{P} orthogonal projections.

- If $U = U_{\delta} = \text{span}\{\chi_{X_{ij}}\}$. (Basis vectors $u_{ij} = \chi_{X_{ij}}$)
- $[\mathcal{R}u_{ij}](\phi,s) = \omega_{\delta}^{\mathrm{rd}}(\phi, x_{ij} \cdot \vartheta_{\phi} s) =: w_{ij}$ which span W_{δ} .
- $W_{\delta} \not\subset V_{\delta} = \text{span } \{\chi_{\Phi_q \times S_p}\}.$
- Given $g \in L^2(\mathcal{S}) \cap W_{\delta}$.
- $g = \sum_{ij=0}^{N_x-1} \beta_{ij} w_{ij}$,

- \mathcal{R}_{δ} finite rank operator,
- $\mathcal{R}_{\delta} = \mathcal{P}_{W}^{*}A\mathcal{P}_{U}$,
 - Finite dimensional $U \subset L^2(\Omega)$ and $W \subset L^2(\mathcal{S})$,
 - $A: U \to W$ and \mathcal{P} orthogonal projections.

- If $U = U_{\delta} = \text{span}\{\chi_{X_{ij}}\}$. (Basis vectors $u_{ij} = \chi_{X_{ij}}$)
- $[\mathcal{R}u_{ij}](\phi, s) = \omega_{\delta}^{\mathrm{rd}}(\phi, x_{ij} \cdot \vartheta_{\phi} s) =: w_{ij}$ which span W_{δ} .
- $W_{\delta} \not\subset V_{\delta} = \text{span} \{ \chi_{\Phi_q \times S_p} \}.$
- Given $g \in L^2(\mathcal{S}) \cap W_{\delta}$.

•
$$g = \sum_{ij=0}^{N_x-1} \beta_{ij} w_{ij}$$
, then $f = \sum_{ij=0}^{N_x-1} \beta_{ij} u_{ij}$ s.t. $\mathcal{R}f = g$.

- \mathcal{R}_{δ} finite rank operator,
- $\mathcal{R}_{\delta} = \mathcal{P}_{W}^{*}A\mathcal{P}_{U}$,
 - Finite dimensional $U \subset L^2(\Omega)$ and $W \subset L^2(\mathcal{S})$,
 - $A: U \to W$ and \mathcal{P} orthogonal projections.

- If $U = U_{\delta} = \text{span}\{\chi_{X_{ij}}\}$. (Basis vectors $u_{ij} = \chi_{X_{ij}}$)
- $[\mathcal{R}u_{ij}](\phi, s) = \omega_{\delta}^{\mathrm{rd}}(\phi, x_{ij} \cdot \vartheta_{\phi} s) =: w_{ij}$ which span W_{δ} .
- $W_{\delta} \not\subset V_{\delta} = \text{span } \{\chi_{\Phi_q \times S_p}\}.$
- Given $g \in L^2(\mathcal{S}) \cap W_{\delta}$.

•
$$g = \sum_{ij=0}^{N_x-1} \beta_{ij} w_{ij}$$
, then $f = \sum_{ij=0}^{N_x-1} \beta_{ij} u_{ij}$ s.t. $\mathcal{R}f = g$.

- \mathcal{R}_{δ} finite rank operator,
- $\mathcal{R}_{\delta} = \mathcal{P}_{W}^{*}A\mathcal{P}_{U}$,
 - Finite dimensional $U \subset L^2(\Omega)$ and $W \subset L^2(\mathcal{S})$,
 - $A: U \to W$ and \mathcal{P} orthogonal projections.

- If $U = U_{\delta} = \text{span}\{\chi_{X_{ij}}\}$. (Basis vectors $u_{ij} = \chi_{X_{ij}}$)
- $[\mathcal{R}u_{ij}](\phi, s) = \omega_{\delta}^{\mathrm{rd}}(\phi, x_{ij} \cdot \vartheta_{\phi} s) =: w_{ij}$ which span W_{δ} .
- $W_{\delta} \not\subset V_{\delta} = \text{span } \{\chi_{\Phi_q \times S_p}\}.$
- Given $g \in L^2(\mathcal{S}) \cap W_{\delta}$.

•
$$g = \sum_{ij=0}^{N_x-1} \beta_{ij} w_{ij}$$
, then $f = \sum_{ij=0}^{N_x-1} \beta_{ij} u_{ij}$ s.t. $\mathcal{R}f = g$.

- \mathcal{R}_{δ} finite rank operator,
- $\mathcal{R}_{\delta} = \mathcal{P}_{W}^{*}A\mathcal{P}_{U}$,
 - Finite dimensional $U \subset L^2(\Omega)$ and $W \subset L^2(S)$,
 - $A \colon U \to W$ and \mathcal{P} orthogonal projections.

- If $U = U_{\delta} = \text{span}\{\chi_{X_{ij}}\}$. (Basis vectors $u_{ij} = \chi_{X_{ij}}$)
- $[\mathcal{R}u_{ij}](\phi,s) = \omega_{\delta}^{\mathrm{rd}}(\phi, x_{ij} \cdot \vartheta_{\phi} s) =: w_{ij}$ which span W_{δ} .
- $W_{\delta} \not\subset V_{\delta} = \text{span} \{ \chi_{\Phi_q \times S_p} \}.$
- Given $g \in L^2(\mathcal{S}) \cap W_{\delta}$.
- $g = \sum_{ij=0}^{N_x-1} \beta_{ij} w_{ij}$, then $f = \sum_{ij=0}^{N_x-1} \beta_{ij} u_{ij}$ s.t. $\mathcal{R}f = g$.
- Finding coefficients as difficult as tomographic problem.

• Prefer V_{δ} as basis to W_{δ} :

- Prefer V_{δ} as basis to W_{δ} :
 - Know orthogonal basis,
 - Coefficients easily determinable,
 - Local basis.

DTU

- Prefer V_{δ} as basis to W_{δ} :
 - Know orthogonal basis,
 - Coefficients easily determinable,
 - Local basis.

• Given $w \in W_{\delta}$, what is the closest $v \in V_{\delta}$?

- Prefer V_{δ} as basis to W_{δ} :
 - Know orthogonal basis,
 - Coefficients easily determinable,
 - Local basis.

• Given $w \in W_{\delta}$, what is the closest $v \in V_{\delta}$?

DTU

- Prefer V_{δ} as basis to W_{δ} :
 - Know orthogonal basis,
 - Coefficients easily determinable,
 - Local basis.

- Given $w \in W_{\delta}$, what is the closest $v \in V_{\delta}$?
- Both $W_{\delta}, V_{\delta} \subset L^2(\mathcal{S}).$

DTU

- Prefer V_{δ} as basis to W_{δ} :
 - Know orthogonal basis,
 - Coefficients easily determinable,
 - Local basis.

- Given $w \in W_{\delta}$, what is the closest $v \in V_{\delta}$?
- Both $W_{\delta}, V_{\delta} \subset L^2(\mathcal{S}).$
- Can consider projection $v = \mathcal{P}_{V_{\delta}} w$

.

- Prefer V_{δ} as basis to W_{δ} :
 - Know orthogonal basis,
 - Coefficients easily determinable,
 - Local basis.

- Given $w \in W_{\delta}$, what is the closest $v \in V_{\delta}$?
- Both $W_{\delta}, V_{\delta} \subset L^2(\mathcal{S}).$
- Can consider projection $v = \mathcal{P}_{V_{\delta}} w = \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \langle w, v_{qp} \rangle v_{qp}$.

DTU

- Prefer V_{δ} as basis to W_{δ} :
 - Know orthogonal basis,
 - Coefficients easily determinable,
 - Local basis.

- Given $w \in W_{\delta}$, what is the closest $v \in V_{\delta}$?
- Both $W_{\delta}, V_{\delta} \subset L^2(\mathcal{S}).$
- Can consider projection $v = \mathcal{P}_{V_{\delta}} w = \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \langle w, v_{qp} \rangle v_{qp}$.

- Know orthogonal basis,
- Coefficients easily determinable,
- Local basis.

- Given $w \in W_{\delta}$, what is the closest $v \in V_{\delta}$?
- Both $W_{\delta}, V_{\delta} \subset L^2(\mathcal{S}).$
- Can consider projection $v = \mathcal{P}_{V_{\delta}}w = \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \langle w, v_{qp} \rangle v_{qp}$.

Combined, for $\mathcal{R}^{\mathrm{op}}_{\delta} := \mathcal{P}^*_{V_{\delta}} \mathcal{P}_{V_{\delta}} \mathcal{R}_{|U_{\delta}} \mathcal{P}_{U_{\delta}}$

- Prefer V_{δ} as basis to W_{δ} :
 - Know orthogonal basis,
 - Coefficients easily determinable,
 - Local basis.

- Given $w \in W_{\delta}$, what is the closest $v \in V_{\delta}$?
- Both $W_{\delta}, V_{\delta} \subset L^2(\mathcal{S}).$
- Can consider projection $v = \mathcal{P}_{V_{\delta}}w = \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \langle w, v_{qp} \rangle v_{qp}$.

Combined, for $\mathcal{R}^{\mathrm{op}}_{\delta} := \mathcal{P}^*_{V_{\delta}} \mathcal{P}_{V_{\delta}} \mathcal{R}_{|U_{\delta}} \mathcal{P}_{U_{\delta}}$

- Prefer V_{δ} as basis to W_{δ} :
 - Know orthogonal basis,
 - Coefficients easily determinable,
 - Local basis.

- Given $w \in W_{\delta}$, what is the closest $v \in V_{\delta}$?
- Both $W_{\delta}, V_{\delta} \subset L^2(\mathcal{S}).$
- Can consider projection $v = \mathcal{P}_{V_{\delta}}w = \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \langle w, v_{qp} \rangle v_{qp}$.

- Prefer V_{δ} as basis to W_{δ} :
 - Know orthogonal basis,
 - Coefficients easily determinable,
 - Local basis.

- Given $w \in W_{\delta}$, what is the closest $v \in V_{\delta}$?
- Both $W_{\delta}, V_{\delta} \subset L^2(\mathcal{S}).$
- Can consider projection $v = \mathcal{P}_{V_{\delta}}w = \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \langle w, v_{qp} \rangle v_{qp}$.

- Prefer V_{δ} as basis to W_{δ} :
 - Know orthogonal basis,
 - Coefficients easily determinable,
 - Local basis.

- Given $w \in W_{\delta}$, what is the closest $v \in V_{\delta}$?
- Both $W_{\delta}, V_{\delta} \subset L^2(\mathcal{S}).$
- Can consider projection $v = \mathcal{P}_{V_{\delta}} w = \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \langle w, v_{qp} \rangle v_{qp}$.

$$\mathcal{R}^{\mathrm{op}}_{\delta} u = \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_{s}-1} \sum_{i,j=0}^{N_{s}-1} \alpha_{ij} \langle \underbrace{\mathcal{R}u_{ij}}_{w_{ij}}, v_{qp} \rangle v_{qp}$$

- Prefer V_{δ} as basis to W_{δ} :
 - Know orthogonal basis,
 - Coefficients easily determinable,
 - Local basis.

- Given $w \in W_{\delta}$, what is the closest $v \in V_{\delta}$?
- Both $W_{\delta}, V_{\delta} \subset L^2(\mathcal{S}).$
- Can consider projection $v = \mathcal{P}_{V_{\delta}} w = \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \langle w, v_{qp} \rangle v_{qp}$.

$$\mathcal{R}^{\mathrm{op}}_{\delta} u = \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_{s}-1} \sum_{i,j=0}^{N_{s}-1} \alpha_{ij} \langle \underbrace{\mathcal{R}u_{ij}}_{w_{ij}}, v_{qp} \rangle v_{qp}.$$

- Prefer V_{δ} as basis to W_{δ} :
 - Know orthogonal basis,
 - Coefficients easily determinable,
 - Local basis.

- Given $w \in W_{\delta}$, what is the closest $v \in V_{\delta}$?
- Both $W_{\delta}, V_{\delta} \subset L^2(\mathcal{S}).$
- Can consider projection $v = \mathcal{P}_{V_{\delta}} w = \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \langle w, v_{qp} \rangle v_{qp}$.

$$\mathcal{R}^{\mathrm{op}}_{\delta} u = \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_{s}-1} \sum_{i,j=0}^{N_{s}-1} \alpha_{ij} \langle \underbrace{\mathcal{R}u_{ij}}_{w_{ij}}, v_{qp} \rangle v_{qp}$$

The L^2 Optimal Discretization Optimal discretization

Theorem

Due to the orthogonality properties, we have
DTU

Theorem

Due to the orthogonality properties, we have

$$\|\mathcal{R}u - \mathcal{R}^{\mathrm{op}}_{\delta} u\|_{L^{2}(\mathcal{S})} \le \|\mathcal{R}u - v\|_{L^{2}(\mathcal{S})} \quad \text{for all } u \in U_{\delta}, \ v \in V_{\delta},$$

Theorem

Due to the orthogonality properties, we have

 $\|\mathcal{R}u - \mathcal{R}^{\mathrm{op}}_{\delta} u\|_{L^{2}(\mathcal{S})} \le \|\mathcal{R}u - v\|_{L^{2}(\mathcal{S})} \quad \text{for all } u \in U_{\delta}, \ v \in V_{\delta},$

DTU

Theorem

Due to the orthogonality properties, we have

$$\begin{aligned} \|\mathcal{R}u - \mathcal{R}^{\mathrm{op}}_{\delta} u\|_{L^{2}(\mathcal{S})} &\leq \|\mathcal{R}u - v\|_{L^{2}(\mathcal{S})} \\ \|\mathcal{R}^{*}v - \mathcal{R}^{\mathrm{op}*}_{\delta} v\|_{L^{2}(\Omega)} &\leq \|\mathcal{R}^{*}v - u\|_{L^{2}(\Omega)} \end{aligned}$$

25 DTU Compute

for all $u \in U_{\delta}$, $v \in V_{\delta}$,

for all $u \in U_{\delta}, v \in V_{\delta}$.

DTU

Theorem

Due to the orthogonality properties, we have

$$\begin{aligned} \|\mathcal{R}u - \mathcal{R}_{\delta}^{\mathrm{op}} u\|_{L^{2}(\mathcal{S})} &\leq \|\mathcal{R}u - v\|_{L^{2}(\mathcal{S})} \\ \|\mathcal{R}^{*}v - \mathcal{R}_{\delta}^{\mathrm{op}*} v\|_{L^{2}(\Omega)} &\leq \|\mathcal{R}^{*}v - u\|_{L^{2}(\Omega)} \end{aligned}$$

for all $u \in U_{\delta}$, $v \in V_{\delta}$, for all $u \in U_{\delta}$, $v \in V_{\delta}$.

DTU

Theorem

Due to the orthogonality properties, we have

$$\begin{aligned} \|\mathcal{R}u - \mathcal{R}_{\delta}^{\mathrm{op}} u\|_{L^{2}(\mathcal{S})} &\leq \|\mathcal{R}u - v\|_{L^{2}(\mathcal{S})} \qquad \text{for all } u \in U_{\delta}, \ v \in V_{\delta}, \\ \|\mathcal{R}^{*}v - \mathcal{R}_{\delta}^{\mathrm{op}*} v\|_{L^{2}(\Omega)} &\leq \|\mathcal{R}^{*}v - u\|_{L^{2}(\Omega)} \qquad \text{for all } u \in U_{\delta}, \ v \in V_{\delta}. \end{aligned}$$

$$\begin{aligned} \|\mathcal{R}u - \mathcal{R}_{\delta}^{\mathrm{op}} u\|_{L^{2}(\mathcal{S})} &\leq \|\mathcal{R}u - \mathcal{R}_{\delta}^{\mathrm{rd}} u\|_{L^{2}(\mathcal{S})} & \text{for all } u \in U_{\delta}, \\ \|\mathcal{R}^{*}v - \mathcal{R}_{\delta}^{\mathrm{op*}} v\|_{L^{2}(\Omega)} &\leq \|\mathcal{R}^{*}v - \mathcal{R}_{\delta}^{\mathrm{pd*}} v\|_{L^{2}(\Omega)} & \text{for all } v \in V_{\delta}. \end{aligned}$$

DTU

Theorem

Due to the orthogonality properties, we have

$$\begin{aligned} \|\mathcal{R}u - \mathcal{R}_{\delta}^{\mathrm{op}} u\|_{L^{2}(\mathcal{S})} &\leq \|\mathcal{R}u - v\|_{L^{2}(\mathcal{S})} \qquad \text{for all } u \in U_{\delta}, \ v \in V_{\delta}, \\ \|\mathcal{R}^{*}v - \mathcal{R}_{\delta}^{\mathrm{op*}} v\|_{L^{2}(\Omega)} &\leq \|\mathcal{R}^{*}v - u\|_{L^{2}(\Omega)} \qquad \text{for all } u \in U_{\delta}, \ v \in V_{\delta}. \end{aligned}$$

$$\begin{aligned} \|\mathcal{R}u - \mathcal{R}^{\mathrm{op}}_{\delta} u\|_{L^{2}(\mathcal{S})} &\leq \|\mathcal{R}u - \mathcal{R}^{\mathrm{rd}}_{\delta} u\|_{L^{2}(\mathcal{S})} & \text{for all } u \in U_{\delta}, \\ \|\mathcal{R}^{*}v - \mathcal{R}^{\mathrm{op*}}_{\delta} v\|_{L^{2}(\Omega)} &\leq \|\mathcal{R}^{*}v - \mathcal{R}^{\mathrm{pd*}}_{\delta} v\|_{L^{2}(\Omega)} & \text{for all } v \in V_{\delta}. \end{aligned}$$

DTU

Theorem

Due to the orthogonality properties, we have

$$\begin{aligned} \|\mathcal{R}u - \mathcal{R}_{\delta}^{\mathrm{op}} u\|_{L^{2}(\mathcal{S})} &\leq \|\mathcal{R}u - v\|_{L^{2}(\mathcal{S})} \qquad \text{for all } u \in U_{\delta}, \ v \in V_{\delta}, \\ \|\mathcal{R}^{*}v - \mathcal{R}_{\delta}^{\mathrm{op*}} v\|_{L^{2}(\Omega)} &\leq \|\mathcal{R}^{*}v - u\|_{L^{2}(\Omega)} \qquad \text{for all } u \in U_{\delta}, \ v \in V_{\delta}. \end{aligned}$$

$$\begin{aligned} \|\mathcal{R}u - \mathcal{R}^{\mathrm{op}}_{\delta} u\|_{L^{2}(\mathcal{S})} &\leq \|\mathcal{R}u - \mathcal{R}^{\mathrm{rd}}_{\delta} u\|_{L^{2}(\mathcal{S})} & \text{for all } u \in U_{\delta}, \\ \|\mathcal{R}^{*}v - \mathcal{R}^{\mathrm{op*}}_{\delta} v\|_{L^{2}(\Omega)} &\leq \|\mathcal{R}^{*}v - \mathcal{R}^{\mathrm{pd}^{*}}_{\delta} v\|_{L^{2}(\Omega)} & \text{for all } v \in V_{\delta}. \end{aligned}$$

The L² Optimal Discretization Optimal discretization

DTU

Theorem

Due to the orthogonality properties, we have

$$\begin{aligned} & \|\mathcal{R}u - \mathcal{R}_{\delta}^{\mathrm{op}} \, u\|_{L^{2}(\mathcal{S})} \leq \|\mathcal{R}u - v\|_{L^{2}(\mathcal{S})} & \text{ for all } u \in U_{\delta}, \ v \in V_{\delta}, \\ & \|\mathcal{R}^{*}v - \mathcal{R}_{\delta}^{\mathrm{op}*} \, v\|_{L^{2}(\Omega)} \leq \|\mathcal{R}^{*}v - u\|_{L^{2}(\Omega)} & \text{ for all } u \in U_{\delta}, \ v \in V_{\delta}. \end{aligned}$$

In particular,

$$\begin{aligned} \|\mathcal{R}u - \mathcal{R}_{\delta}^{\mathrm{op}} u\|_{L^{2}(\mathcal{S})} &\leq \|\mathcal{R}u - \mathcal{R}_{\delta}^{\mathrm{rd}} u\|_{L^{2}(\mathcal{S})} & \text{for all } u \in U_{\delta}, \\ \|\mathcal{R}^{*}v - \mathcal{R}_{\delta}^{\mathrm{op*}} v\|_{L^{2}(\Omega)} &\leq \|\mathcal{R}^{*}v - \mathcal{R}_{\delta}^{\mathrm{pd*}} v\|_{L^{2}(\Omega)} & \text{for all } v \in V_{\delta}. \end{aligned}$$

• Our choice of U_{δ} and V_{δ} somewhat arbitrary.

The L² Optimal Discretization Optimal discretization

DTU

Theorem

Due to the orthogonality properties, we have

$$\begin{aligned} \|\mathcal{R}u - \mathcal{R}_{\delta}^{\mathrm{op}} u\|_{L^{2}(\mathcal{S})} &\leq \|\mathcal{R}u - v\|_{L^{2}(\mathcal{S})} \qquad \text{for all } u \in U_{\delta}, \ v \in V_{\delta}, \\ \|\mathcal{R}^{*}v - \mathcal{R}_{\delta}^{\mathrm{op*}} v\|_{L^{2}(\Omega)} &\leq \|\mathcal{R}^{*}v - u\|_{L^{2}(\Omega)} \qquad \text{for all } u \in U_{\delta}, \ v \in V_{\delta}. \end{aligned}$$

$$\begin{aligned} \|\mathcal{R}u - \mathcal{R}^{\mathrm{op}}_{\delta} u\|_{L^{2}(\mathcal{S})} &\leq \|\mathcal{R}u - \mathcal{R}^{\mathrm{rd}}_{\delta} u\|_{L^{2}(\mathcal{S})} & \text{for all } u \in U_{\delta}, \\ \|\mathcal{R}^{*}v - \mathcal{R}^{\mathrm{op*}}_{\delta} v\|_{L^{2}(\Omega)} &\leq \|\mathcal{R}^{*}v - \mathcal{R}^{\mathrm{pd*}}_{\delta} v\|_{L^{2}(\Omega)} & \text{for all } v \in V_{\delta}. \end{aligned}$$

- Our choice of U_{δ} and V_{δ} somewhat arbitrary.
- Explicit orthonormal system.

DTU

Theorem

Due to the orthogonality properties, we have

$$\begin{aligned} \|\mathcal{R}u - \mathcal{R}_{\delta}^{\mathrm{op}} u\|_{L^{2}(\mathcal{S})} &\leq \|\mathcal{R}u - v\|_{L^{2}(\mathcal{S})} \qquad \text{for all } u \in U_{\delta}, \ v \in V_{\delta}, \\ \|\mathcal{R}^{*}v - \mathcal{R}_{\delta}^{\mathrm{op*}} v\|_{L^{2}(\Omega)} &\leq \|\mathcal{R}^{*}v - u\|_{L^{2}(\Omega)} \qquad \text{for all } u \in U_{\delta}, \ v \in V_{\delta}. \end{aligned}$$

$$\begin{aligned} \|\mathcal{R}u - \mathcal{R}^{\mathrm{op}}_{\delta} u\|_{L^{2}(\mathcal{S})} &\leq \|\mathcal{R}u - \mathcal{R}^{\mathrm{rd}}_{\delta} u\|_{L^{2}(\mathcal{S})} & \text{for all } u \in U_{\delta}, \\ \|\mathcal{R}^{*}v - \mathcal{R}^{\mathrm{op*}}_{\delta} v\|_{L^{2}(\Omega)} &\leq \|\mathcal{R}^{*}v - \mathcal{R}^{\mathrm{pd*}}_{\delta} v\|_{L^{2}(\Omega)} & \text{for all } v \in V_{\delta}. \end{aligned}$$

- Our choice of U_{δ} and V_{δ} somewhat arbitrary.
- Explicit orthonormal system.
- Other choices possible, e.g., piecewise linear.

• Recall, for $u = \sum_{i,j=0}^{N_x-1} \alpha_{ij} u_{ij}$ we have

• Recall, for $u = \sum_{i,j=0}^{N_x-1} \alpha_{ij} u_{ij}$ we have

$$\mathcal{R}^{\mathrm{op}}_{\delta} u = \delta_x \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \sum_{i,j=0}^{N_x-1} \alpha_{ij} \langle w_{ij}, v_{qp} \rangle v_{qp}.$$

• Recall, for $u = \sum_{i,j=0}^{N_x-1} \alpha_{ij} u_{ij}$ we have

$$\mathcal{R}^{\mathrm{op}}_{\delta} u = \delta_x \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \sum_{i,j=0}^{N_x-1} \alpha_{ij} \langle w_{ij}, v_{qp} \rangle v_{qp}.$$

• Recall, for $u = \sum_{i,j=0}^{N_x-1} \alpha_{ij} u_{ij}$ we have

$$\mathcal{R}^{\mathrm{op}}_{\delta} u = \delta_x \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \sum_{i,j=0}^{N_x-1} \alpha_{ij} \langle w_{ij}, v_{qp} \rangle v_{qp}.$$

• Can we explicitly and efficiently calculate $\langle w_{ij}, v_{qp} \rangle = \langle \mathcal{R}u_{ij}, v_{qp} \rangle$?

• Recall, for
$$u = \sum_{i,j=0}^{N_x - 1} \alpha_{ij} u_{ij}$$
 we have

$$\mathcal{R}^{\mathrm{op}}_{\delta} u = \delta_x \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \sum_{i,j=0}^{N_s-1} \alpha_{ij} \langle w_{ij}, v_{qp} \rangle v_{qp}.$$

- Can we explicitly and efficiently calculate $\langle w_{ij}, v_{qp} \rangle = \langle \mathcal{R} u_{ij}, v_{qp} \rangle$?
- We calculate

• Recall, for
$$u = \sum_{i,j=0}^{N_x-1} \alpha_{ij} u_{ij}$$
 we have

$$\mathcal{R}^{\mathrm{op}}_{\delta} u = \delta_x \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \sum_{i,j=0}^{N_s-1} \alpha_{ij} \langle w_{ij}, v_{qp} \rangle v_{qp}.$$

• Can we explicitly and efficiently calculate $\langle w_{ij}, v_{qp} \rangle = \langle \mathcal{R}u_{ij}, v_{qp} \rangle$?

$$\langle w_{ij}, v_{qp} \rangle = \frac{1}{\delta_s |\Phi_q|} \int_{\Phi_q} \int_{S_p} \mathcal{H}^1(X_{ij} \cap L_{\phi,s}) \,\mathrm{d}s \,\mathrm{d}\phi$$

• Recall, for
$$u = \sum_{i,j=0}^{N_x-1} \alpha_{ij} u_{ij}$$
 we have

$$\mathcal{R}^{\mathrm{op}}_{\delta} u = \delta_x \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \sum_{i,j=0}^{N_s-1} \alpha_{ij} \langle w_{ij}, v_{qp} \rangle v_{qp}.$$

• Can we explicitly and efficiently calculate $\langle w_{ij}, v_{qp} \rangle = \langle \mathcal{R} u_{ij}, v_{qp} \rangle$?

$$\langle w_{ij}, v_{qp} \rangle = \frac{1}{\delta_s |\Phi_q|} \int_{\Phi_q} \int_{S_p} \mathcal{H}^1(X_{ij} \cap L_{\phi,s}) \, \mathrm{d}s \, \mathrm{d}\phi = \frac{1}{\delta_s |\Phi_q|} \int_{\Phi_q} \mathcal{L}^2(X_{ij} \cap \mathsf{Strip}_{\phi,S_p}) \, \mathrm{d}\phi,$$

• Recall, for
$$u = \sum_{i,j=0}^{N_x-1} \alpha_{ij} u_{ij}$$
 we have

$$\mathcal{R}^{\mathrm{op}}_{\delta} u = \delta_x \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \sum_{i,j=0}^{N_s-1} \alpha_{ij} \langle w_{ij}, v_{qp} \rangle v_{qp}.$$

• Can we explicitly and efficiently calculate $\langle w_{ij}, v_{qp} \rangle = \langle \mathcal{R}u_{ij}, v_{qp} \rangle$?

$$\begin{split} \langle w_{ij}, v_{qp} \rangle &= \frac{1}{\delta_s |\Phi_q|} \int_{\Phi_q} \int_{S_p} \mathcal{H}^1(X_{ij} \cap L_{\phi,s}) \, \mathrm{d}s \, \mathrm{d}\phi = \frac{1}{\delta_s |\Phi_q|} \int_{\Phi_q} \mathcal{L}^2(X_{ij} \cap \mathsf{Strip}_{\phi,S_p}) \, \mathrm{d}\phi, \\ \text{where } \mathsf{Strip}_{\phi,S_p} &:= \{ x \in X_{ij} \cap L_{\phi,s} \text{ for some } s \in S_p \}. \end{split}$$

• Recall, for
$$u = \sum_{i,j=0}^{N_x-1} \alpha_{ij} u_{ij}$$
 we have

$$\mathcal{R}^{\mathrm{op}}_{\delta} u = \delta_x \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \sum_{i,j=0}^{N_s-1} \alpha_{ij} \langle w_{ij}, v_{qp} \rangle v_{qp}.$$

• Can we explicitly and efficiently calculate $\langle w_{ij}, v_{qp} \rangle = \langle \mathcal{R} u_{ij}, v_{qp} \rangle$?

• We calculate

$$\begin{split} \langle w_{ij}, v_{qp} \rangle &= \frac{1}{\delta_s |\Phi_q|} \int_{\Phi_q} \int_{S_p} \mathcal{H}^1(X_{ij} \cap L_{\phi,s}) \, \mathrm{d}s \, \mathrm{d}\phi = \frac{1}{\delta_s |\Phi_q|} \int_{\Phi_q} \mathcal{L}^2(X_{ij} \cap \mathsf{Strip}_{\phi,S_p}) \, \mathrm{d}\phi, \\ \text{where } \mathsf{Strip}_{\phi,S_p} &:= \{ x \in X_{ij} \cap L_{\phi,s} \text{ for some } s \in S_p \}. \end{split}$$

• We can calculate $\mathcal{L}^2(X_{ij} \cap \operatorname{Strip}_{\phi,S_p})$ efficiently.

• Recall, for
$$u = \sum_{i,j=0}^{N_x-1} \alpha_{ij} u_{ij}$$
 we have

$$\mathcal{R}^{\mathrm{op}}_{\delta} u = \delta_x \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \sum_{i,j=0}^{N_s-1} \alpha_{ij} \langle w_{ij}, v_{qp} \rangle v_{qp}.$$

• Can we explicitly and efficiently calculate $\langle w_{ij}, v_{qp} \rangle = \langle \mathcal{R} u_{ij}, v_{qp} \rangle$?

• We calculate

$$\begin{split} \langle w_{ij}, v_{qp} \rangle &= \frac{1}{\delta_s |\Phi_q|} \int_{\Phi_q} \int_{S_p} \mathcal{H}^1(X_{ij} \cap L_{\phi,s}) \, \mathrm{d}s \, \mathrm{d}\phi = \frac{1}{\delta_s |\Phi_q|} \int_{\Phi_q} \mathcal{L}^2(X_{ij} \cap \mathsf{Strip}_{\phi,S_p}) \, \mathrm{d}\phi, \\ \text{where } \mathsf{Strip}_{\phi,S_p} &:= \{ x \in X_{ij} \cap L_{\phi,s} \text{ for some } s \in S_p \}. \end{split}$$

- We can calculate $\mathcal{L}^2(X_{ij} \cap \mathsf{Strip}_{\phi,S_p})$ efficiently.
- Many different cases, makes integration difficult.

26

• Recall, for
$$u = \sum_{i,j=0}^{N_x-1} \alpha_{ij} u_{ij}$$
 we have

$$\mathcal{R}^{\mathrm{op}}_{\delta} u = \delta_x \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \sum_{i,j=0}^{N_x-1} \alpha_{ij} \langle w_{ij}, v_{qp} \rangle v_{qp}.$$

• Can we explicitly and efficiently calculate $\langle w_{ij}, v_{qp} \rangle = \langle \mathcal{R} u_{ij}, v_{qp} \rangle$?

$$\begin{split} \langle w_{ij}, v_{qp} \rangle &= \frac{1}{\delta_s |\Phi_q|} \int_{\Phi_q} \int_{S_p} \mathcal{H}^1(X_{ij} \cap L_{\phi,s}) \, \mathrm{d}s \, \mathrm{d}\phi = \frac{1}{\delta_s |\Phi_q|} \int_{\Phi_q} \mathcal{L}^2(X_{ij} \cap \mathsf{Strip}_{\phi,S_p}) \, \mathrm{d}\phi, \\ \text{where } \mathsf{Strip}_{\phi,S_p} &:= \{ x \in X_{ij} \cap L_{\phi,s} \text{ for some } s \in S_p \}. \end{split}$$

- We can calculate $\mathcal{L}^2(X_{ij} \cap \text{Strip}_{\phi, S_p})$ efficiently.
- Many different cases, makes integration difficult.
- For now $\langle w_{ij}, v_{qp} \rangle \approx \mathcal{L}^2(X_{ij} \cap \text{Strip}_{\phi_q, S_p}).$

• Recall, for
$$u = \sum_{i,j=0}^{N_x-1} \alpha_{ij} u_{ij}$$
 we have

$$\mathcal{R}^{\mathrm{op}}_{\delta} u = \delta_x \sum_{q=0}^{N_{\phi}-1} \sum_{p=0}^{N_s-1} \sum_{i,j=0}^{N_x-1} \alpha_{ij} \langle w_{ij}, v_{qp} \rangle v_{qp}.$$

• Can we explicitly and efficiently calculate $\langle w_{ij}, v_{qp} \rangle = \langle \mathcal{R} u_{ij}, v_{qp} \rangle$?

$$\begin{split} \langle w_{ij}, v_{qp} \rangle &= \frac{1}{\delta_s |\Phi_q|} \int_{\Phi_q} \int_{S_p} \mathcal{H}^1(X_{ij} \cap L_{\phi,s}) \, \mathrm{d}s \, \mathrm{d}\phi = \frac{1}{\delta_s |\Phi_q|} \int_{\Phi_q} \mathcal{L}^2(X_{ij} \cap \mathsf{Strip}_{\phi,S_p}) \, \mathrm{d}\phi, \\ \text{where } \mathsf{Strip}_{\phi,S_p} &:= \{ x \in X_{ij} \cap L_{\phi,s} \text{ for some } s \in S_p \}. \end{split}$$

- We can calculate $\mathcal{L}^2(X_{ij} \cap \text{Strip}_{\phi, S_p})$ efficiently.
- Many different cases, makes integration difficult.
- For now $\langle w_{ij}, v_{qp} \rangle \approx \mathcal{L}^2(X_{ij} \cap \text{Strip}_{\phi_q, S_p}).$

• The described weights correspond to the 'Strip Model'.

• The described weights correspond to the 'Strip Model'.

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.
 - Creating novel Weighted Strip Models.

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.
 - Creating novel Weighted Strip Models.

$$\langle w_{ij}, v_{qp} \rangle = \int_{X_{ij} \cap \mathsf{Rayset}} \left| \frac{\partial x}{\partial(r, t)} \right|^{-1} (x) \, \mathrm{d}x$$

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.
 - Creating novel Weighted Strip Models.
 - Multiplicative factor related to Jakobi-determinants reflecting geometry.

$$\langle w_{ij}, v_{qp} \rangle = \int_{X_{ij} \cap \text{Rayset}} \left| \frac{\partial x}{\partial(r, t)} \right|^{-1} (x) \, \mathrm{d}x$$

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.
 - Creating novel Weighted Strip Models.
 - Multiplicative factor related to Jakobi-determinants reflecting geometry.

$$\langle w_{ij}, v_{qp} \rangle = \int_{X_{ij} \cap \text{Rayset}} \left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x) \, \mathrm{d}x$$

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.
 - Creating novel Weighted Strip Models.
 - Multiplicative factor related to Jakobi-determinants reflecting geometry.

$$\langle w_{ij}, v_{qp} \rangle = \int_{X_{ij} \cap \text{Rayset}} \left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x) \, \mathrm{d}x$$

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.
 - Creating novel Weighted Strip Models.
 - Multiplicative factor related to Jakobi-determinants reflecting geometry.

$$\begin{split} \langle w_{ij}, v_{qp} \rangle &= \int_{X_{ij} \cap \mathsf{Rayset}} \left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x) \, \mathrm{d}x \\ &= \mathcal{L}^2(X_{ij} \cap \mathsf{Rayset}) \left(\left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x_{ij}) + \mathcal{O}(\delta_x) \right) \end{split}$$

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.
 - Creating novel Weighted Strip Models.
 - Multiplicative factor related to Jakobi-determinants reflecting geometry.

$$\begin{aligned} \langle w_{ij}, v_{qp} \rangle &= \int_{X_{ij} \cap \mathsf{Rayset}} \left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x) \, \mathrm{d}x \\ &= \mathcal{L}^2(X_{ij} \cap \mathsf{Rayset}) \left(\left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x_{ij}) + \mathcal{O}(\delta_x) \right) \end{aligned}$$

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.
 - Creating novel Weighted Strip Models.
 - Multiplicative factor related to Jakobi-determinants reflecting geometry.

$$\langle w_{ij}, v_{qp} \rangle = \int_{X_{ij} \cap \mathsf{Rayset}} \left| \frac{\partial x}{\partial(r, t)} \right|^{-1} (x) \, \mathrm{d}x$$

= $\mathcal{L}^2(X_{ij} \cap \mathsf{Rayset}) \left(\left| \frac{\partial x}{\partial(r, t)} \right|^{-1} (x_{ij}) + \mathcal{O}(\delta_x) \right)$

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.
 - Creating novel Weighted Strip Models.
 - Multiplicative factor related to Jakobi-determinants reflecting geometry.
 - Novel-discretizations that are (in some sense) better than existing ones.

$$\begin{aligned} \langle w_{ij}, v_{qp} \rangle &= \int_{X_{ij} \cap \mathsf{Rayset}} \left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x) \, \mathrm{d}x \\ &= \mathcal{L}^2(X_{ij} \cap \mathsf{Rayset}) \left(\left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x_{ij}) + \mathcal{O}(\delta_x) \right) \end{aligned}$$
- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.
 - Creating novel Weighted Strip Models.
 - Multiplicative factor related to Jakobi-determinants reflecting geometry.
 - Novel-discretizations that are (in some sense) better than existing ones.

$$\begin{aligned} \langle w_{ij}, v_{qp} \rangle &= \int_{X_{ij} \cap \mathsf{Rayset}} \left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x) \, \mathrm{d}x \\ &= \mathcal{L}^2(X_{ij} \cap \mathsf{Rayset}) \left(\left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x_{ij}) + \mathcal{O}(\delta_x) \right) \end{aligned}$$

く

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.
 - Creating novel Weighted Strip Models.
 - Multiplicative factor related to Jakobi-determinants reflecting geometry.
 - Novel-discretizations that are (in some sense) better than existing ones.
 - Very flexible to shape of detector, adaptive grids, etc.

$$\begin{aligned} \langle w_{ij}, v_{qp} \rangle &= \int_{X_{ij} \cap \mathsf{Rayset}} \left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x) \, \mathrm{d}x \\ &= \mathcal{L}^2(X_{ij} \cap \mathsf{Rayset}) \left(\left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x_{ij}) + \mathcal{O}(\delta_x) \right) \end{aligned}$$

く

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.
 - Creating novel Weighted Strip Models.
 - Multiplicative factor related to Jakobi-determinants reflecting geometry.
 - Novel-discretizations that are (in some sense) better than existing ones.
 - Very flexible to shape of detector, adaptive grids, etc.

$$\begin{aligned} \langle w_{ij}, v_{qp} \rangle &= \int_{X_{ij} \cap \mathsf{Rayset}} \left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x) \, \mathrm{d}x \\ &= \mathcal{L}^2(X_{ij} \cap \mathsf{Rayset}) \left(\left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x_{ij}) + \mathcal{O}(\delta_x) \right) \end{aligned}$$

く

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.
 - Creating novel Weighted Strip Models.
 - Multiplicative factor related to Jakobi-determinants reflecting geometry.
 - Novel-discretizations that are (in some sense) better than existing ones.
 - Very flexible to shape of detector, adaptive grids, etc.

$$\begin{aligned} \langle w_{ij}, v_{qp} \rangle &= \int_{X_{ij} \cap \mathsf{Rayset}} \left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x) \, \mathrm{d}x \\ &= \mathcal{L}^2(X_{ij} \cap \mathsf{Rayset}) \left(\left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x_{ij}) + \mathcal{O}(\delta_x) \right) \end{aligned}$$

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.
 - Creating novel Weighted Strip Models.
 - Multiplicative factor related to Jakobi-determinants reflecting geometry.
 - Novel-discretizations that are (in some sense) better than existing ones.
 - Very flexible to shape of detector, adaptive grids, etc.

$$\begin{aligned} \langle w_{ij}, v_{qp} \rangle &= \int_{X_{ij} \cap \mathsf{Rayset}} \left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x) \, \mathrm{d}x \\ &= \mathcal{L}^2(X_{ij} \cap \mathsf{Rayset}) \left(\left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x_{ij}) + \mathcal{O}(\delta_x) \right) \end{aligned}$$

5

- The described weights correspond to the 'Strip Model'.
- Due to the orthogonality we now this is optimal discretization.
- Is naturally an matched operator pair.
- Extendable to fanbeam and conebeam geometries.
 - Creating novel Weighted Strip Models.
 - Multiplicative factor related to Jakobi-determinants reflecting geometry.
 - Novel-discretizations that are (in some sense) better than existing ones.
 - Very flexible to shape of detector, adaptive grids, etc.
 - The choice of spaces U_{δ} and V_{δ} somewhat arbitrary.

$$\begin{aligned} \langle w_{ij}, v_{qp} \rangle &= \int_{X_{ij} \cap \mathsf{Rayset}} \left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x) \, \mathrm{d}x \\ &= \mathcal{L}^2(X_{ij} \cap \mathsf{Rayset}) \left(\left| \frac{\partial x}{\partial (r, t)} \right|^{-1} (x_{ij}) + \mathcal{O}(\delta_x) \right) \end{aligned}$$

Conclusion

• Convolutional discretizations:

- Weight function,
- Finite rank operator between piecewise constant function spaces,
- Both Ray-driven and Pixel-driven are special cases.

Conclusion

- Convolutional discretizations:
 - Weight function,
 - Finite rank operator between piecewise constant function spaces,
 - Both Ray-driven and Pixel-driven are special cases.
- Convergence:
 - Suitable discretization parameter,
 - Convergence in the strong operator topology,
 - Experiments confirm behaviour.

Conclusion

- Convolutional discretizations:
 - Weight function,
 - Finite rank operator between piecewise constant function spaces,
 - Both Ray-driven and Pixel-driven are special cases.
- Convergence:
 - Suitable discretization parameter,
 - Convergence in the strong operator topology,
 - Experiments confirm behaviour.
- Optimal discretizations:
 - Weighted-Strip models,
 - Better approximation,
 - Matched operator pairs.

Conclusion

- Convolutional discretizations:
 - Weight function,
 - Finite rank operator between piecewise constant function spaces,
 - Both Ray-driven and Pixel-driven are special cases.
- Convergence:
 - Suitable discretization parameter,
 - Convergence in the strong operator topology,
 - Experiments confirm behaviour.
- Optimal discretizations:
 - Weighted-Strip models,
 - Better approximation,
 - Matched operator pairs.
- Outlook:
 - Extensions to Fanbeam and Conebeam transformations,
 - Implementation and testing of optimal discretizations,
 - Connection to Finite Element methods.

Conclusion References

- Kristian Bredies & Richard Huber. Convergence Analysis of Pixel-Driven Radon and Fanbeam Transforms, SIAM Journal on Numerical Analysis, 59(3), 1399–1432, 2021.
- Richard Huber. A Novel Interpretation of the Radon Transform's Rayand Pixel-Driven Discretizations under Balanced Resolution. Accepted to the 10th International Conference on Scale Space and Variational Methods in Computer Vision, 2025.
- Richard Huber. Convergence of Ray- and Pixel-Driven Discretization Frameworks in the Strong Operator Topology. Submitted to Inverse Problems and Imaging, 2025