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4. Exercise Sheet
Inverse Problems

30th November, 2021

Basic information: Regularization
A family of functions (Rα)α∈]0,α0] (for some α0 > 0) is called regularization, if for every

y† ∈ Dom(T †) there is a parameter choice rule α = αy† : ]0,∞[×Y →]0, α0] such that

lim
δ→0

sup{‖Rα
y† (δ,y

δ)y
δ − T †y†‖

∣∣ yδ ∈ Y, ‖yδ − y†‖ ≤ δ} = 0 (1)

lim
δ→0

sup{αy†(δ, yδ) | yδ ∈ Y, ‖yδ − y†‖ ≤ δ} = 0. (2)

The pair ((Rα)α, {αy†}y†∈Dom(T †)}) is called a regularization method. When (Rα)α is a family

of continuous operators such that Rαy → T †y as α→ 0 for all y ∈ Dom(T †), then (Rα)α is a
regularization. Moreover, a linear regularization (Rα)α is a regularization method together
with an a-priori parameter choice α if and only if limδ→0 α(δ) = 0 and limδ→0 δ‖Rα(δ)‖ = 0.

We consider the source set Xµ,ρ = (T ∗T )µ(B(0, ρ)) for µ, ρ > 0 and call a regularization
method order optimal (for µ > 0), if there is a constant c such that sup{‖Rαyδ − x‖ | x ∈
Xµ,ρ, y

δ ∈ Y, ‖yδ − Tx‖ ≤ δ} ≤ cδ
2µ

2µ+1 ρ
1

2µ+1 for all δ > 0.
Spectral filtering consists in constructing Rα via spectral integrals, i.e., Rα = gα(T ∗T )T ∗ for
some functions gα : ]0, ‖T‖2]→ R bounded and measurable. Indeed, if

lim
α→0

gα(λ) =
1

λ
for every λ and λgα(λ) ≤ c (3)

for some constant c, then Rα is a regularization. Moreover, if

sup
λ∈]0,‖T‖2]

|gα(λ)| = O(α−1) and λµ|1− λgα(λ)| < cαµ, (4)

then Rα together with α(δ) ≈
(
δ
ρ

) 2
2µ+1

yields an order optimal regularization method (w.r.t.

this µ).

Example 4.1) [Matrix free regularization]
Given T ∈ L(X,Y ) between Hilbert spaces, we consider a family of operators (Rα)α>0 according
to Rα = gα(T ∗T )T ∗ = pα

qα
(T ∗T )T ∗ for families of polynomials pα(λ) =

∑N−1
k=0 ak(α)λk and

qα(λ) =
∑N

k=0 bk(α)λk for some ak, bk : ]0, α0] → [0,∞]. Further, we assume b0(α) > 0 and
(without loss of generality) maxk∈{0,...,N} bk = 1.

a) Let
ak−1(α)
bk(α) → 1 for k ∈ {1, . . . , N} (understanding 0

0 = 1) and b0 → 0. Show that

(Rα)α is a regularization. Further, show that x = Rαy is equivalent to solution of
qα(T ∗T )x = pα(T ∗T )T ∗y.

b) Assume for some l ∈ {1, . . . , N} that
ak−1(α)
bk(α) − 1 = O(α) for all k ∈ {1, . . . , N} and

b0(α) = α as α→ 0. Show that the regularization is order optimal at least up to µ ≤ 1.

c) Show that forRα to satisfy (3), the ak(α) must be bounded; conclude, that limα→0 |ak−1(α)−
bk(α)| = 0 for k ∈ {1, . . . , N} and b0 → 0 are necessary.

Remark. Note that for many operators, the spectral measures are unknown or it is non-viable
to compute spectral integrals, even in a discrete setting. Hence, it is not possible to use (naively)
spectral filtering to such operators. However, recall that the functional calculus for polynomials
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can be computed without the actual spectral measure or spectral integrals, but only by iterative
application of T ∗T . Hence, many regularization methods used in practice are of a form that
can be computed by evaluations of T and T ∗.

Example 4.2) [Source set of periodic convolution]
Let Ω = [0, 1[. We consider the (linear and continuous) periodic convolution operator

T : L2(Ω,C)→ L2(Ω,C) [Tf ](x) =

∫
Ω
f(y)k(x− y) dy for almost every x ∈ Ω, (5)

for a given k ∈ L2(R/Z,C) (i.e., k ∈ L2(Ω,C) periodically extended). It is easy to check,
that T is compact and possesses eigenvectors (en)n∈Z with en = e2πinx, and corresponding
eigenvalues k̂n =

∫
Ω k(x)en dx = 〈k, en〉. We say f ∈ H l

#(R/Z,C) if f ∈ L2(R/Z,C) is l times

weakly differentiable (on R) with derivatives in L2(R/Z,C). Note that the weak differentiation
operator ∂l : H l

#(R/Z,C) ⊂ L2(Ω)→ L2(R/Z) is closed.

a) Show that given f ∈ L2(Ω,C), f ∈ H1
#(R/Z,C) if and only if

∑
n∈Z |n|2|〈f, en〉|2 <∞.

b) We assume k̂0 = 1 and c|n|−1 ≤ |k̂n| ≤ C|n|−1 for some constants c, C > 0 and all
n ∈ Z \ {0}. (This corresponds to the assumption T ′ : f 7→ ∂Tf is well defined on
L2(R/Z), with closed range and ker(T ′) = span{1}). Show Xl = H2l

#(R/Z,C) for l ∈ N.

Remark. This exemplifies how Xµ contains more ”regular” elements for greater µ. Note that
this can be generalized to higher dimensions and fractional Sobolev spaces.

Example 4.3) [Radon transform]
Let Ω = B(0, 1) ⊂ R2, Ω′ = [−1, 1]×[0, π[ and ν(ϕ) = (cos(ϕ), sin(ϕ)), ν⊥(ϕ) = (− sin(ϕ), cos(ϕ)).
For f ∈ C(Ω), the Radon transform is defined according to

[R̃f ](s, ϕ) =

∫ √1−s2

−
√

1−s2
f(sν(ϕ) + tν⊥(ϕ)) dt for (s, ϕ) ∈ Ω′. (6)

a) Show that R̃ : C(Ω)→ C(Ω′), and the existence of a c > 0 such that ‖R̃f‖L2 ≤ c‖f‖L2

for all f ∈ C(Ω). Consequently, R̃ can be uniquely extended to R : L2(Ω)→ L2(Ω′).

b) Show that [R∗g](x) =
∫ π

0 g(x · ν(ϕ), ϕ) dϕ for g ∈ C(Ω′). Conclude that R∗Rf = k ∗ f
(restricted to Ω) for k(x) = 1

‖x‖χB(0,2).

c) Let Ω̂′ = R× [0, π[ and F1 : L2(Ω′)→ L2(Ω̂′) with [Fg](ξ, ϕ) = 1√
2π

∫ 1
−1 g(s, ϕ)e−isξ ds

the Fourier transform with respect to the first variable. Further, let M : Dom(M) ⊂
L2(Ω̂′)→ L2(Ω̂′)} be defined according to [Mg](ξ, ϕ) = |ξ|g(ξ, ϕ), with Dom(M) = {g ∈
L2(Ω̂′) | Mg ∈ L2(Ω̂′)}. One can show (though this gets quite technical)

R† =
1

2π
R∗F∗1MF1. (7)



We modify M to (the linear and continuous) Mα : L2(Ω̂′)→ L2(Ω̂′) with [Mαg](ξ, ϕ) =
χ[−α−1,α−1](ξ)|ξ|g(ξ, ϕ) and consider the corresponding family of functions (Rα)α>0 with

Rα = 1
2πR

∗F∗1MαF1.

Show, that Rα is a regularization of the ill-posed inverse problem Rf = g.

Remark. The Radon transform plays an important role in the context of computed tomography
(e.g. reconstructing the density of a human body from a set of x-ray images from various
directions). The formulation of R† is known as the Filtered Backprojection, while this regu-
larization is known as the Ram-Lak filter. Since the Radon transform has some similarities
to convolution (see R∗R), it makes sense that the pseudo inverse has some relation to the
pseudo-inverse of a deconvolution problem (see Exercise 1.3).


