Richard Huber 3. Exercise Sheet Inverse Problems
richard.huber@uni-graz.at ) 16th November, 2021

Basic information: Spectral measures and functional calculus

A selfadjoint bounded S € L(H, H) := L(H) (H Hilbert space) possesses a (compact) spectrum
o(S)c{AeR : A <|S|}; if S is positive semi-definite (such is T*T'), then o(S) C [0, ||5]|]-
Based on this spectrum, there is a (unique) spectral measure E := E°, with the following
properties: E¥: B(o(S)) — L(H) s.t. E%(A) is an orthogonal projection for A € B(c(S))
(Borel measurable), with ES(0) = 0, E°(0(9)) = idg and ES(U;en 4i) = ey B (4) for
measurable, pairwise disjoint A;. Then

_ S
S_/U(S>)\dE ), (1)

where the integral is understood as an integral of a real-valued function with respect to a
vector valued (sigma additive) measure (see lecture on Advanced Analysis). In particular, for
compact operators, E° is a discrete measure and E° ({\}) is the projection onto the eigenspace
with respect to the eigenvalue A (and zero otherwise).

Moreover, for a selfadjoint S € L(H) and for continuous (more generally bounded Borel
measurable) functions f: o(S) — R one can define the selfadjoint operator f(S) € L(H) in the
following way called functional calculus: For polynomials f(t) = Zfi 0 a;t', the corresponding

operator f(S5) := Zf;io a; S, which satisfies

(f+9)(8) = F(S)+9(5),  (f-9)(5)=f(5)g(5),  FSI < flleo (2)

and can be extended to continuous operators (by density). In particular, if f,, — f pointwise
such that sup,,cy || fnlloo < 00, then f,,(S)x — f(S)x for all z € H (convergence in the strong
operator topology).

In particular, these two concepts are connected via y4(S) = E¥(A), and

f(s) = FA)AES(N) or equivalently f(Sz = ) d(ES()\)a:). (3)
o(S) a(S)

In the special case of S compact, f(S)r = >, cn f(An)(un, )un + f(0)Prex(s)®, Where
(An, Un)nen is an eigenvalue decomposition of S with A\, # 0 and Pye(s) is the orthonor-
mal projection onto ker(.S).

The integral formula (3|) with given x (on the right) can be extended to unbounded measurable
functions f, however, f(S) is not necessarily continuous and Dom(f(S)) = {z € X | || f(S)z| <
oo}, where || f(S)z||? = fU(S) |f(N)2d||E® (\)z|)? if finite. The properties remain valid.

Example 3.1) [Singular value decomposition of Hilbert-Schmidt operators]
Prove the statement of example 2.4Db).

Example 3.2) [Functional Calculus]

Let T € L(X,Y) between Hilbert spaces X and Y. The following statements hold: For
continuous f: o(S) — R it holds that f(T*T)T* = T*f(TT*). Also, Rg(T™*) = Rg(|T|) (with
T| = (1"T)3).

a) Show these statements for compact T via the sum representation of the functional
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calculus and the singular value decomposition.

b) Bonus: Show the statement for bounded 7" (not necessarily compact).

Hint. There is a unitary mapping U: Rg(|T|) — Rg(T) such that T = U|T| (see polar
decomposition in Functional Analysis).

Example 3.3) [Pseudo-inverse via spectral measure]
Let T € L(X,Y) between Hilbert spaces. In the lecture, it was shown that Tt = (T*T)IT*.

a) Show that (T*T) = fa(T*T)\{O} +dETT(X). What is Dom((T*T)") and in which way

does this characterize Dom(7T)?

b) For > 0, the set X, = Rg((T*T)*) is called the source set to y. Find a characterization
of X, via the spectral measure ET'T,

Hint. ET7"7({0}) corresponds to the orthogonal projection onto ker(T*T) = ker(T).

Remark. Point a) gives us a concrete definition of TT via the spectral measure and T*y. This
will be useful in finding suitable approximations (regularization) by replacing % by bounded
functions, see later in the lecture. Since T compact is understood to possess some kind of
smoothing properties, elements of X, are somehow more ‘regular’; the higher p the more
so. This reqularity will be exploited in the lecture to find convergence rates of reqularization
methods.

Example 3.4) [Showalter regularization]
Let T € L(X,Y) between Hilbert spaces and y € Y fixed. We consider the corresponding
(functional) differential equation

9 (1) + T*Tx(t) =T*y ¢ >0, (4)
z(0) =0,

where x € C1([0,00), X) (continuously Fréchet differentiable with %f(t) = limyp, 0 w)

a) Assuming that T is compact, compute a solution of by decoupling into suitable
differential equations for complex valued functions. (Here it is not so important to
be perfectly rigorous). Find functions (f;)i>0 with f;: o(T*T) — R such that z(t) =
f(T*T)T*y.

b) Show that there exists a unique solution to (4). Hint: Show rigorously that z(t) =
fi(T*T)T*y is a solution. Uniqueness can be shown by classical energy estimates, i.e.,
: P 2,
consider % if y=0.
c) Show that ||z(t)|| — oo for t — oo if y ¢ Dom(TT), while if y € Dom(7TT), then
x(t) — TTy. Hint: Consider the derivative of ||z(t) — TTy||?> when y € Dom(T').

Remark. As stated in Example 8.8 one could replace % with a bounded function. Here,

this function f; is given implicitly via , with the motivation that x(t) is always moving
in a direction reducing the residue, i.e., a gradient flow (gradient descent). Concerning the
solvability, the theorem of Picard-Lindeléf would also holds in Hilbert spaces.



