
Richard Huber
richard.huber@uni-graz.at
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Basic information: Spectral measures and functional calculus
A selfadjoint bounded S ∈ L(H,H) := L(H) (H Hilbert space) possesses a (compact) spectrum
σ(S) ⊂ {λ ∈ R : |λ| ≤ ‖S‖}; if S is positive semi-definite (such is T ∗T ), then σ(S) ⊂ [0, ‖S‖].
Based on this spectrum, there is a (unique) spectral measure E := ES , with the following
properties: ES : B(σ(S)) → L(H) s.t. ES(A) is an orthogonal projection for A ∈ B(σ(S))
(Borel measurable), with ES(∅) = 0, ES(σ(S)) = idH and ES(

⋃
i∈NAi) =

∑
i∈NE

S(Ai) for
measurable, pairwise disjoint Ai. Then

S =

∫
σ(S)

λ dES(λ), (1)

where the integral is understood as an integral of a real-valued function with respect to a
vector valued (sigma additive) measure (see lecture on Advanced Analysis). In particular, for
compact operators, ES is a discrete measure and ES({λ}) is the projection onto the eigenspace
with respect to the eigenvalue λ (and zero otherwise).
Moreover, for a selfadjoint S ∈ L(H) and for continuous (more generally bounded Borel
measurable) functions f : σ(S)→ R one can define the selfadjoint operator f(S) ∈ L(H) in the
following way called functional calculus: For polynomials f(t) =

∑N
i=0 ait

i, the corresponding

operator f(S) :=
∑N

i=0 aiS
i, which satisfies

(f + g)(S) = f(S) + g(S), (f · g)(S) = f(S)g(S), ‖f(S)‖ ≤ ‖f‖∞, (2)

and can be extended to continuous operators (by density). In particular, if fn → f pointwise
such that supn∈N ‖fn‖∞ <∞, then fn(S)x→ f(S)x for all x ∈ H (convergence in the strong
operator topology).
In particular, these two concepts are connected via χA(S) = ES(A), and

f(S) =

∫
σ(S)

f(λ) dES(λ) or equivalently f(S)x =

∫
σ(S)

f(λ) d
(
ES(λ)x

)
. (3)

In the special case of S compact, f(S)x =
∑

n∈N f(λn)〈un, x〉un + f(0)Pker(S)x, where
(λn, un)n∈N is an eigenvalue decomposition of S with λn 6= 0 and Pker(S) is the orthonor-
mal projection onto ker(S).
The integral formula (3) with given x (on the right) can be extended to unbounded measurable
functions f , however, f(S) is not necessarily continuous and Dom(f(S)) = {x ∈ X | ‖f(S)x‖ <
∞}, where ‖f(S)x‖2 =

∫
σ(S) |f(λ)|2 d‖ES(λ)x‖2 if finite. The properties (2) remain valid.

Example 3.1) [Singular value decomposition of Hilbert-Schmidt operators]
Prove the statement of example 2.4b).

Example 3.2) [Functional Calculus]
Let T ∈ L(X,Y ) between Hilbert spaces X and Y . The following statements hold: For
continuous f : σ(S)→ R it holds that f(T ∗T )T ∗ = T ∗f(TT ∗). Also, Rg(T ∗) = Rg(|T |) (with

|T | := (T ∗T )
1
2 ).

a) Show these statements for compact T via the sum representation of the functional

University of Graz
Institut für Mathematik

und wissenschaft. Rechnen

mailto:richard.huber@uni-graz.at
https://www.uni-graz.at/


calculus and the singular value decomposition.

b) Bonus: Show the statement for bounded T (not necessarily compact).

Hint. There is a unitary mapping U : Rg(|T |) → Rg(T ) such that T = U |T | (see polar
decomposition in Functional Analysis).

Example 3.3) [Pseudo-inverse via spectral measure]
Let T ∈ L(X,Y ) between Hilbert spaces. In the lecture, it was shown that T † = (T ∗T )†T ∗.

a) Show that (T ∗T )† =
∫
σ(T ∗T )\{0}

1
λ dET

∗T (λ). What is Dom((T ∗T )†) and in which way

does this characterize Dom(T †)?

b) For µ ≥ 0, the set Xµ = Rg((T ∗T )µ) is called the source set to µ. Find a characterization
of Xµ via the spectral measure ET

∗T .

Hint. ET
∗T ({0}) corresponds to the orthogonal projection onto ker(T ∗T ) = ker(T ).

Remark. Point a) gives us a concrete definition of T † via the spectral measure and T ∗y. This
will be useful in finding suitable approximations (regularization) by replacing 1

λ by bounded
functions, see later in the lecture. Since T compact is understood to possess some kind of
smoothing properties, elements of Xµ are somehow more ‘regular’; the higher µ the more
so. This regularity will be exploited in the lecture to find convergence rates of regularization
methods.

Example 3.4) [Showalter regularization]
Let T ∈ L(X,Y ) between Hilbert spaces and y ∈ Y fixed. We consider the corresponding
(functional) differential equation{

∂x
∂t (t) + T ∗Tx(t) = T ∗y t ≥ 0,

x(0) = 0,
(4)

where x ∈ C1([0,∞), X) (continuously Fréchet differentiable with ∂x
∂t (t) := lim|h|→0

x(t+h)−x(t)
h ).

a) Assuming that T is compact, compute a solution of (4) by decoupling into suitable
differential equations for complex valued functions. (Here it is not so important to
be perfectly rigorous). Find functions (ft)t≥0 with ft : σ(T ∗T ) → R such that x(t) =
ft(T

∗T )T ∗y.

b) Show that there exists a unique solution to (4). Hint: Show rigorously that x(t) =
ft(T

∗T )T ∗y is a solution. Uniqueness can be shown by classical energy estimates, i.e.,

consider ∂‖x(t)‖2
∂t if y = 0.

c) Show that ‖x(t)‖ → ∞ for t → ∞ if y 6∈ Dom(T †), while if y ∈ Dom(T †), then
x(t)→ T †y. Hint: Consider the derivative of ‖x(t)− T †y‖2 when y ∈ Dom(T †).

Remark. As stated in Example 3.3 one could replace 1
λ with a bounded function. Here,

this function ft is given implicitly via (4), with the motivation that x(t) is always moving
in a direction reducing the residue, i.e., a gradient flow (gradient descent). Concerning the
solvability, the theorem of Picard-Lindelöf would also holds in Hilbert spaces.


