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Inverse Problems
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Basic information: The Moore-Penrose inverse
A linear inverse problem consists in solving an equation

Tx = y (1)

for x ∈ X, where X,Y ´ Hilbert spaces, y ∈ Y and T ∈ L(X,Y ) (the space of linear continuous
functions from X to Y ) are given.
The Moore-Penrose inverse (also generalized or pseudo inverse) is defined as follows. Set
T̃ : ker(T )⊥ → Rg(T ) (from the orthogonal of the kernel of T onto the range of T ) with
T̃ x = Tx for x ∈ ker(T )⊥, which is obviously a linear bijective function that possesses an
inverse T̃−1 : Rg(T ) → ker(T )⊥. When decomposing y ∈ Rg(T ) ⊕ Rg(T )⊥ := Dom(T †)
into y = y1 + y2 with y1 ∈ Rg(T ), y2 ∈ Rg(T )⊥ one can define the Moore-Penrose inverse
T † : Dom(T †) → ker(T )⊥ with T †y = T̃−1y1. Note that neither is Dom(T †) necessarily the
entirety of Y nor is T † necessarily continuous.
We recall a few basic results from the functional analysis: On a Hilbert space, any bounded
sequence possesses a weakly convergent subsequence and conversely, a weakly convergent
sequence is bounded (uniform boundedness principle). Moreover, note that in a Hilbert
space H, the unit ball is compact if and only if H is finite-dimensional. We call an operator
T ∈ L(X,Y ) compact (and write T ∈ K(X,Y )), if for any bounded set A ⊂ X the image
T (A) is relatively compact (i.e., every sequence has a convergent subsequence).

Example 1.1) [Compact operators]
Let X and Y be Hilbert spaces. Show the following claims concerning compact operators:

a) Let T ∈ L(X,Y ). The function T is compact if and only if T is completely continuous,
i.e., xn ⇀ x in X (weak convergence in X) implies ‖Txn − Tx‖Y → 0.

b) Let T ∈ K(X,Y ). T has closed range if and only if Rg(T ) is finite-dimensional.

Remark. Compact operators are in a sense the closest analog to finite dimensional linear
functions in Hilbert spaces, and in particular, offer easy insight due to being described by
countable singular systems. Statement a) can be quite useful in verifying compactness of an
operator. Statement b) on the other hand, as will be shown in the lecture, implies that inverse
problems with compact operators are always ill-posed (do not possess continuous T †).

Example 1.2) [Computation of Moore-Penrose Inverse]
Compute for the following T ∈ L(X,Y ) the Moore-Penrose inverse of T and check whether
Dom(T †) = Y .

a) For Hilbert spaces X,Y and fixed u ∈ X with u 6= 0 and v ∈ Y with v 6= 0 let T : X → Y
be defined according to Tx = v〈u, x〉 (where 〈·, ·〉 denote the scalar product on X).

b) Let T : L2([0, 1])→ L2([0, 1]) according to

[Tx](t) =

∫ t

0
x(s) ds for almost every t ∈ [0, 1]. (2)

University of Graz
Institut für Mathematik

und wissenschaft. Rechnen

mailto:richard.huber@uni-graz.at
https://www.uni-graz.at/


Remark. The Moore-Penrose inverse is a natural generalization of inverse functions in
case said function is not bijective, but can lack desirable analytical properties, thus requiring
regularization methods, see the lecture.

Example 1.3) [Deconvolution via Fourier transform]
The Fourier transform FL2 : L2(R,C)→ L2(R,C) is a linear unitary (isometric and surjective)
operator, while FL1 : L1(R,C)→ C0(R,C) (the decaying continuous functions endowed with
the supremum norm) is linear and continuous (they coincide on L1(R,C) ∩ L2(R,C)). Let
k ∈ L1(R,C), k 6= 0 and define (the linear and continuous) K : L2(R,C)→ L2(R,C) with

[Kf ](x) = [k ∗ f ](x) =

∫
R
k(x− y)f(y) dy for almost ever x ∈ R. (3)

Moreover, the Fourier transform is connected to the convolution in the following sense: for
u ∈ L2(R,C) and v ∈ L1(R,C)

FL2 [u ∗ v] =
√

2π[FL2u] · [FL1v], (4)

where · represents pointwise multiplication.

a) Characterize Rg(K) and ker(K) via the properties of their elements concerning the
Fourier transform.

b) Find K† and conclude that K† is not continuous.

Hint. Many analytical properties such as orthogonality, convergence or closedness are invariant
under application of unitary operators.

Remark. Deconvolution is a classical example of an ill-posed inverse problem, and as we
have just seen, the problem is not difficult to solve analytically, however, the solution process
is not continuous and is thus only of limited use. Nonetheless, the identity of K† can be used
to find regular approximations of K−1, see Example 1.4.

Example 1.4) [Numerical deconvolution]
In Exercise 1 4.m you find a Matlab/Octave code segment performing deconvolution in a
discrete setting. Note that the scaling of the discrete Fourier transform is different from the
analytical one, and the padding of data with zeros is necessary since the discrete analog to (4)
holds for periodic convolution (and with the help of padding, it coincides with the classical
convolution). You may adapt the code for your purposes to answer the following questions, in
particular, create suitable figures to support your findings: Please also upload your code to
Moodle.

a) What role does epsilon play in this code, and why is it necessary? Try the code with
different epsilon in the range of 10−16 to 1 as well as zero, what do you observe?

b) Adapt the code by computing W via Fourier transforms of k and y (which is not possible
in real applications since y is unknown). Check that this new W coincides with the
previous W to a reasonable degree. Repeat your considerations for different epsilon
with this new W. What do you observe and why does the behavior differ?

https://imsc.uni-graz.at/huber/Teaching_pages/2021_blatter_Inverse_Problems/Exercise_1_4.m

